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1 Introduction

The moments of the risk-neutral probability distribution of a specific asset’s returns are

termed risk-neutral moments (RNMs). RNMs are extracted from the market prices of

options written on the asset of interest. They are the building block in the vast literature

which examines the informational content of market option prices, to address a number

of topics in finance, such as asset pricing, asset allocation, and stock return and economic

growth predictability (see Giamouridis and Skiadopoulos (2011), Christoffersen et al.

(2013), Bali et al. (2016), Faccini et al. (2019), and references therein). Typically, this

literature employs risk-neutral volatility, risk-neutral skewness, and risk-neutral kurtosis,

as cases of RNMs. The Bakshi et al. (2003) (BKM) formulae is the current de facto way

to estimate these RNMs. Their appeal stems from their model-free nature; they make

no assumptions on the risk-neutral distribution, and they only require the market prices

of options as inputs. However, the BKM formulae are based on the assumption that the

underlying asset market is frictionless. Market frictions, such as short-sale constraints and

transaction costs, exist though. This questions the current practice of estimating RNMs.

In this paper, we revisit the estimation of RNMs, in the presence of market frictions in

the underlying asset. We provide generalised formulae to estimate RNMs, and we show

that the estimation bias, due to not taking frictions into account, can be economically

significant. To the best of our knowledge, this is the first study which provides generalised

Bakshi et al. (2003) (BKM) formulae in a non-frictionless setting.

We develop our approach as follows. First, we recognise that RNMs are related to the

risk-neutral expected return of the underlying asset, which we relate to market frictions.

To this end, we revisit the martingale restriction (MR) under a formal theoretical setting,

which takes market frictions into account. MR is a property of asset prices, in the absence

of market frictions; if the market is frictionless and arbitrage-free, asset prices discounted

by the risk-free rate should be martingales, under the risk-neutral probability measure

(first fundamental theorem of asset pricing; Harrison and Kreps, 1979; Harrison and

Pliska, 1981). MR predicts that the risk-neutral expected asset return equals the risk-

free rate. In the case where MR does not hold, there will be a wedge between the

risk-neutral expected asset return and the risk-free rate. A non-zero wedge signifies that

MR is violated, due to the presence of market frictions.

Next, we show theoretically how to estimate RNMs in a compatible way with the
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possible violation of MR in the underlying market. The original BKM formulae (O-

RNMs) mis-estimate RNMs, in the case where MR is violated in the underlying market.

The bias in the estimation of O-RNMs arises from two sources. The first source is the

usage of a wrong risk-neutral expected underlying asset’s return to calculate the central

moments (i.e., moments around the mean) of returns. The original BKM formulae rely

on the implicit assumption that the risk-neutral expected asset return equals the risk-free

rate. This assumption does not hold though, if MR is violated in the underlying market.

We remedy this drawback by providing the generalized BKM formulae to estimate RNMs

(G-RNMs). The G-RNM formulae are similar to the BKM formulae, except that the risk-

neutral expected underlying asset’s return equals the sum of the risk-free rate and the

return wedge between the risk-free rate and expected underlying return. A remark is in

order. To derive the G-RNM formulae, we acknowledge that we maintain the assumption

that option prices satisfy MR. This is equivalent to assuming that the option market

is frictionless. Admittedly, this assumption is also violated in practice. However, it is

necessary to allow calculating RNMs in a model-free way, as the original BKM formulae

do. We prefer taking a “step-by-step” approach, and explore first any effects of the

violation of MR in the underlying market, before switching to a non model-free setting,

where other strong assumptions will be required (e.g., on modeling market frictions).

The second source of O-RNMs bias stems from using the Black and Scholes (1973)

implied volatilities (BS-IV) to compute O-RNMs.1 Taking risk-neutral skewness (RNS)

as an example, we show that in a simulated setting, the use of the standard BS-IV, as an

input to interpolate option prices, yields a mis-estimated RNS, in the case where MR is

violated in the underlying market. Interestingly, the slope of BS-IV curves (measured as

the difference between out-of-the-money and at-the-money option’s BS-IV) is frequently

interpreted as a proxy of RNS (e.g., Bali et al., 2018). We show that in the presence

of market frictions, a non-zero BS-IV slope measure does not necessarily mean that the

underlying distribution is not log-normal, in contrast to the common perception. To

remedy the drawbacks of BS-IVs, we propose the robust IV, which accounts for the

possible violation of MR in the calculation of IV. Our simulation results show that the

1The implementation of the theoretical formulae of BKM requires a continuum of option prices with
respect to the strike price. However, market option prices are available only for discrete strikes. To obtain
a continuum of option prices, typically, one interpolates/extrapolates the BS-IVs of the corresponding
traded options. Then, she transforms the obtained continuum of BS-IVs to their corresponding option
prices.
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estimation bias in RNS decreases, once we interpolate option prices in the space of the

robust, rather than BS IVs. Moreover, the robust IV ensures that the slope of the

robust IV curve satisfies an elementary property: a flat robust IV curve corresponds to

log-normally distributed asset returns.

To operationalize empirical exercises, we employ the Spot and Synthetic Difference

(SSD) measure proposed by Hiraki and Skiadopoulos (2023) (HS). HS demonstrate that

SSD provides a good estimation of the return wedge between the risk-free rate and the

expected risk-neutral stock return. Therefore, by using SSD, the calculation of the gen-

eralized BKM formulae and the robust IV is feasible. Equipped with SSD, first we test

whether the S&P 500 index and U.S. individual equities violate MR, by examining the size

of their respective SSD. We find that both the index and individual stocks frequently vi-

olate MR; their SSD is economically and statistically significant. The 30-day risk-neutral

expected return of the S&P 500 index, deviates from the risk-free rate by 1% to 2% per

year, on average. The degree of the violation of MR is greater for individual stocks.

The time-series average deviation of the 30-day risk-neutral expected return of individual

stocks from the risk-free rate, is greater than 1% per year, for almost all stocks, and

greater than 3% for more than half of the stocks. These findings validate our motivation

to theoretically and empirically investigate the effect of the violation of MR, and hence

of frictions, on the estimated RNMs.

Next, we compare the estimated O-RNMs and G-RNMs of the U.S. individual eq-

uities. We find that the violation of MR due to market frictions, affects mostly the

estimated RNS, rather than the estimated model-free risk-neutral volatility, and kurto-

sis. The correlations between O-RNMs and G-RNM, for the case of the latter two RNMs,

is almost perfect. Importantly, we find that the difference between O-RNS and G-RNS is

economically significant; we find that O-RNS predicts the cross-section of future returns,

as already documented by previous literature, whereas G-RNS, which takes market fric-

tions into account, does not. The latter finding is novel, and echoes Hou et al. (2018).

They document that the vast majority of asset pricing anomalies cease to exist, when the

effect from microcap stocks is mitigated; small size stocks are subject to larger market

frictions. Furthermore, we document that the predictive power of O-RNS stems from its

“bias” component caused by the violation of MR. The bias component is highly correlated

with SSD, which has been found to predict stock returns (Hiraki and Skiadopoulos (2023),
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HS). This high correlation is not surprising, given that SSD measures the degree of the

violation of MR, arising from market frictions. We find that O-RNS predicts future stock

returns only for stocks whose SSD is sufficiently different from zero, that is, for stocks

whose MR is significantly violated. In a nutshell, O-RNS predicts future returns because

its bias component contains predictive power inherited from SSD, previously documented

in HS.

In addition to contributing to the literature on the estimation of RNMs, our study

contributes further to three strands of literature. First, it contributes to the literature

on the relation between asset returns and market frictions. A voluminous literature

has documented that market frictions affect asset returns, under the physical probabil-

ity measure.2 However, relatively little research has been done on the effect of market

frictions to the estimation of option-implied variables, under the risk-neutral probability

measure. Previous studies assume that the underlying satisfies MR, and examine the

effect of empirical regularities, such as discretely traded strikes and measurement errors,

to the estimation of risk-neutral distributions and IVs (Bliss and Panigirtzoglou (2002),

and Hentchel (2003), respectively), and RNMs (Dennis and Mayhew (2009), Ammann

and Feser (2019)). Instead, we examine, for the first time, a theoretically fundamental

type of bias in RNMs, that arising from the violation of MR. Moreover, we show that

this bias occurs even under an ideal situation, where a continuum of option prices are

observable, in the absence of any measurement errors.

Second, we contribute to the literature on testing MR in stock markets (Longstaff

(1995), Strong and Xu, 1999, Neumann and Schlag, 1996, Huang et al., 2016, Guo et al.,

2013). These studies test MR by examining the difference between the market stock

price, and the implied stock price extracted from an option pricing model (typically the

Black and Scholes, 1973, model). They also find that MR is violated. However, we

contribute to this literature by proposing a novel, easy to be implemented, and more

robust approach to test MR; the test is performed by assessing the size of SSD. Our

approach has two desirable properties. First, our test is theoretically founded, based

2Early studies by He and Modest (1995) and Luttmer (1996) argue that the equity risk premium
puzzle can be explained by considering the effect of market frictions on the expected asset returns.
Brunnermeier and Pedersen (2009), Gârleanu and Pedersen (2011), Chabakauri (2013), and Frazzini
and Pedersen (2014), among others, show that margins and leverage constraints affect asset returns. A
number of studies document that short-sale constraints affect stock returns (e.g., Chen et al., 2002; Ofek
et al., 2004; Asquith et al., 2005; Drechsler and Drechsler, 2014). Moreover, Hou et al. (2018) examine
more than 100 market friction-related stock anomaly variables.
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on a reformulation of the MR restriction, in the case where frictions are present. We

demonstrate that the implied stock price approach may reject MR spuriously, even if

MR holds. For example, we show that the BS-model-based implied stock price approach

does not constitute a valid MR test, in the case where the true risk-neutral underlying

distribution is not log-normal. Previous empirical evidence, based on the implied stock

approach, may not be interpreted as violation of MR, but rather as a reflection of the

empirical stylized fact that the IVs of out-of-the money (OTM) equity put options are

greater than those of at-the-money (ATM) options (negative IV skew). Second, our SSD-

based MR test approach is model-free because the estimation of SSD is model-free; HS

show that SSD can be reliably estimated in a model-free manner from properly scaled

deviations from put-call parity. This is in contrast to the implied stock approach, whose

outcome may depend on the choice of the option pricing model.

Finally, our paper is related to the literature which documents that O-RNS positively

predicts future stock returns. There is no consensus regarding the mechanism which

explains this positive relation, and we contribute to this discussion.3 The positive rela-

tion is explained, either by limits-of-arbitrage (Rehman and Vilkov (2012), Stilger et al.

(2017), Gkionis et al. (2018)), or informed option trading (Bali et al. (2018), Borochin

et al. (2018)), or by a combination of these two explanations (Chordia et al. (2019)).4 Our

finding that RNS does not predict stock returns, once we account for market frictions, sup-

ports the limits-of-arbitrage explanation. In addition, we find that the predictive power

of O-RNS is greater among stocks with zero option trading volume, than among stocks

with positive option trading volume. This finding is again at odds with the informed

option trading story; this predicts that the predictive power of option-implied variables

3There is some evidence that that the positive relation between O-RNS and future stock returns may
not be robust to choices of the frequency of data, and options’ time-to-maturity. Conrad et al. (2013)
document that RNS negatively predicts future returns. Borochin et al. (2018) find that there is a positive
(negative) relation between O-RNS and future returns, when O-RNS is estimated from short-term (long-
term) option data. Our paper does not take a view on this debate; it rather identifies a relationship and
examines how this may be affected by the presence of frictions.

4The limits-of-arbitrage explanation argues that stocks with more negative O-RNS are relatively
overpriced, and this overpricing is not corrected fast due to limits-of-arbitrage. The informed option
trading explanation argues that option markets attract informed traders (e.g., Easley et al., 1998).
Therefore, RNS reflects their information prior to its revelation in the underlying stock price. For
example, pessimistic informed traders may utilize their private information through the option market, by
buying OTM put options and selling OTM call options. This trading pressure would increase (decrease)
put (call) option prices (Bollen and Whaley, 2004; Gârleanu et al., 2009), resulting in a lower RNS. These
two explanations are not necessarily mutually exclusive; the limits-of-arbitrage for trading the underlying,
is a prerequisite for option prices to reflect the private information of informed traders (Easley et al.
(1998)).
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is more pronounced, when calculated from options with a higher trading volume. On the

other hand, this finding is consistent with the limits-of-arbitrage explanation. Stocks with

zero option trading volume, tend to be smaller stocks, which face a considerable degree

of market frictions. Therefore, the violation of MR tends to be severer for them, and as

a result, the predictive power of their O-RNS is greater because SSD is greater. This

finding echoes Goncalves-Pinto et al. (2017), who show that their option-based predictor

of stocks returns, termed DOTS, does not exhibit a stronger predictability among stocks

with non-zero option trading volume, versus stocks with zero option trading volume. Note

that our SSD explanation for the predictive power of O-RNS can accommodate both pos-

itive and negative informational content of O-RNS. This is in contrast with a predictive

mechanism based on short-sale constraints, as it can only explain negative informational

content of O-RNS only.

The remaining part of the paper is organized as follows. In Section 2, we outlay the

theoretical framework by revisiting MR. In Section 3, we derive the generalized BKM

formulae to estimate RNMs, and we present the robust IV concept, both of which ad-

dress the possible violation of MR. Section 4 explains the data sources, provides empirical

evidence on the violation of MR, and compares O-RNMs with G-RNMs. Section 5 in-

vestigates the return predictive power of O-RNS and G-RNS for future stock returns.

Section 6 concludes.

2 Theoretical framework: The martingale restriction

We consider a financial market, where three types of assets trade: the risk-free bond, a

risky asset (the stock), and options written on the stock. We assume that the instanta-

neous risk-free rate rf is constant. The gross risk-free bond retrun from time t to T is

denoted as Rf
t,T = erf (T−t). Let St be the stock price at time t. The stock pays dividends,

and D̃t,T denotes the time T value of the cumulative dividends paid over the period (t, T ],

D̃t,T =
∑

t<j≤T

Rf
j,TDj. (1)

We define the cum-dividend gross stock return from t to T by Rt,T = (ST + D̃t,T )/St.

The time-t price of a call (put) option with strike price K and maturity T is denoted

by Ct(K,T ) (Pt(K,T )), and τ = T − t denotes the length of return horizon and op-
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tions’ time-to-maturity. We call discounted (cum-dividend) price process, the discounted

value of the asset with the dividends reinvested (if applicable). For example, the dis-

counted cum-dividend stock price process is defined as {(St+ D̃0,t)/R
f
0,t}t≥0, whereas the

discounted price process of a non-dividend paying asset such as a call option would be

{Ct(K,T )/Rf
0,t}t≥0.

Definition 2.1 (Martingale restriction). The martingale restriction (MR) is said to be

satisfied if the discounted (cum-dividend) price process of any traded asset is a martingale

under a risk-neutral probability measure.

The first fundamental theorem of asset pricing (FFTAP, Harrison and Kreps, 1979;

Harrison and Pliska, 1981) states that in a frictionless market, the no-arbitrage condition

is equivalent to the existence of a risk-neutral probability measure Q, under which MR

is satisfied. On the other hand, in the presence of market frictions, asset prices do not

necessarily satisfy MR.

MR yields a number of important implications regarding the price and the expected

return of any traded asset. First, under MR, the martingale property of the discounted

cum-dividend stock price yields

St + D̃0,t

Rf
0,t

= EQ
t

[
ST + D̃0,T

Rf
0,T

]
⇔ St =

1

Rf
t,T

EQ
t [ST + D̃t,T ], (2)

where EQ
t [.] denotes the expectation under the Q-measure, conditional on the information

set at time t. Equation (2) is the so-called risk-neutral valuation formula, that is, the

current stock price equals the discounted value of the expected future cum-dividend stock

price under Q. Second, equation (2) implies that the expected stock return Rt,T satisfies

EQ
t [Rt,T ] = Rf

t,T , (3)

that is, the Q-expected stock return equals the risk-free rate.

Third, in the asset pricing literature, FFTAP is stated under the physical measure P

(e.g., Cochrane, 2005). For each risk-neutral measure, a corresponding stochastic discount

factor (SDF) is defined as mt,T = e−rf τ (dQ/dP), where dQ/dP is the Radon-Nikodým

derivative for the change of measure from P to Q. Then, by definition, Q and mt,T are
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related through the following change of measure equation,

EP
t [mt,T (ST + D̃t,T )] =

1

Rf
t,T

EQ
t [ST + D̃t,T ]. (4)

Equations (2) and (4) yield

1 = EP
t [mt,TRt,T ]. (5)

Moreover, equation (5) yields the following asset pricing equation:

EP
t [Rt,T ]−Rf

t,T = −Rf
t,TCovPt (mt,T , Rt,T ), (6)

that is, the expected excess return is determined by the covariance between the SDF and

the asset’s return.

Therefore, testing MR is of paramount importance because equations (2) to (6), which

are the cornerstones of asset pricing, hold, if and only if MR holds. Specifically, we will

document that the violation of equation (3) results in biases in the estimated RNMs

based on BKM formulae.

The literature suggests that MR is violated in general. To see this point, note that

equation (6) indicates that there are no alphas if MR holds. As is well-known, the volu-

minous literature suggests that alphas or various anomalies exist. Given this literature,

we assume that MR does not hold in general and there is a non-zero wedge ωt,T between

the risk-free rate and the Q-expected return (i.e., the violation of equation (3):

EQ
t [Rt,T ] = Rf

t,T + ωt,T . (7)

In addition, HS propose a methodology to estimate ωt,T from option prices, which we we

employ in our subsequent empirical analysis.

Relatedly, Longstaff (1995) proposes a way to directly examine whether equation (2)

holds and he claims that MR is violated for US equity indices based on his empirical

investigations. Note, however, that his proposed approach has a flaw as we discuss in

Appendix X.
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3 Estimation of risk-neutral moments: Theory

In this Section, we develop the theory to estimate RNMs, under the possible violation of

MR. In Section 3.1, we provide the generalized Bakshi et al. (2003) (BKM) formulae for

the estimation of RNMs, in the case where the underlying asset violates MR. Then, in

Section 3.2, we investigate the behavior of BS-IV under the violation of MR. This is of

importance for studying the effect of violations of MR to RNMs for two reasons. First,

IV is an essential ingredient to estimate RNMs; our simulation result in Section 3.3 shows

that the usage of the original BKM formulae and the standard IV, results in biases in the

estimated RNS, in the case where MR is violated. Second, the slope of IV curves (e.g., the

difference between OTM option’s IV and ATM option’s IV) is frequently interpreted as a

proxy of RNS (e.g., Bali et al., 2018). However, in Section 3.4, we show that a non-zero

IV slope measure does not necessarily mean that the underlying distribution is not log-

normal, in the case where MR is violated. This is in contrast to the common perception

that the presence of IV skew indicates departure from log-normality. To remedy these

issues, we propose the robust IV, which accounts for the possible violation of MR in the

calculation of IV.

3.1 The generalized Bakshi et al. (2003) formulae

BKM assume that both the underlying asset and option prices satisfy MR, to derive

the original BKM formulae. We relax the assumption that the underlying satisfies MR,

whereas we keep the MR assumption for the option prices. Admittedly, the assumption

that option prices satisfy MR is strong because it implies that option prices are not

affected by market frictions. However, it is not possible to estimate RNMs in a model-

free manner, once this assumption is also relaxed. Our formulae also generalize BKM in

that we allow the underlying asset to pay dividends.

Let rt,T = log((ST + D̃t,T )/St) be the log cum-dividend return of the underlying stock.

The (generalized) BKM formulae estimate the central moments of the distribution of

rt,T . The model-free implied volatility (MFIV), risk-neutral skewness (RNS), and risk-

neutral kurtosis (RNK) of the Q∗-distribution of rt,T are denoted by MFIVt,T , RNSt,T ,

and RNKt,T , respectively. We consider a derivative which delivers a payoff (rt,T )
n with

a positive integer n at time T . We call this derivative the “power-n log return contract”,
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and we denote its present value as M(n)t,T = e−rf τEQ∗

t [(rt,T )
n].5

Proposition 3.1 (Generalized BKM formulae). Assume that the underlying may violate

MR, yet option prices satisfy MR. Then, the MFIV, RNS and RNK are given by

MFIVt,T =

√
erf τM(2)t,T − µ̃2

t,T

τ
, (8)

RNSt,T =
erf τM(3)t,T − 3erf τ µ̃t,TM(2)t,T + 2µ̃3

t,T

[erf τM(2)t,T − µ̃2
t,T ]

3/2
, (9)

RNKt,T =
erf τM(4)t,T − 4erf τ µ̃t,TM(3)t,T + 6erf τ µ̃2

t,TM(2)t,T − 3µ̃4
t,T

[erf τM(2)t,T − µ̃2
t,T ]

2
, (10)

where

µ̃t,T = ωt,T + erf τ − 1− erf τ

2
M(2)t,T − erf τ

6
M(3)t,T − erf τ

24
M(4)t,T (11)

is the forth-order Taylor series approximation of the risk-neutral expected log stock return

(i.e., µ̃t,T ≈ EQ
t [rt,T ]). The value of the power-n log return contracts M(n)t,T is given by

M(n)t,T =

∫ ∞

St−D̃t,T

η(K;St, n)Ct(K,T )dK +

∫ St−D̃t,T

0

η(K;St, n)Pt(K,T )dK, (12)

where

η(K;St, D̃t,T , n) =
n

(K + D̃t,T )2

(n− 1) log

(
K + D̃t,T

St

)n−2

− log

(
K + D̃t,T

St

)n−1
 .

(13)

Proof. See Appendix A.1. 2

Proposition 3.1 provides the formulae to calculate RNMs in a setting where MR may

be violated. These formulae modify the BKM formulae in two ways. First, the risk-

neutral mean of the log stock return µ̃t,T is modified (equation (11)). The expression for

the risk-neutral mean log stock return in BKM’s original study (equation (39) of BKM)

does not contain the MR violation wedge term ωt,T , reflecting their assumption that the

underlying satisfies MR. Therefore, the original BKM formulae mis-estimate the RNMs

of the log stock return if MR is violated, because they use a mis-measured mean of the

log stock return to calculate central moments.

Second, our formulae consider the cum-dividends return, whereas BKM assume that

the underlying pays no dividends. The inclusion of dividends modifies the new formulae

5BKM call the power-2, -3, and -4 log return contracts the volatility, cubic and quartic contracts.
They also denote M(n)t,T (n = 2, 3, 4) by Vt,T , Wt,T , Xt,T , respectively.
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in two ways compared to BKM. First, the boundary between the call and put integration

regions in equation (12) changes to St − D̃t,T from St in the original BKM formulae.

Second, the “weighting” function, equation (13), also changes. These two changes oc-

cur because the payoff function changes from the power of the ex-dividend log return

(log(ST/St))
n to that of the cum-dividend log return (log((ST + D̃t,T )/St))

n.

Proposition 3.1 has provided formulae to estimate the RNMs of the cum-dividend

return. The next Proposition, provides formulae for the RNMs of the ex-dividend return,

rext,T = log(ST/St).

Proposition 3.2 (Generalized BKM formulae for the ex-dividend return). To estimate

the RNMs of the ex-dividend return, the value of power-n contracts is given by

M(n)t,T =

∫ ∞

St

ηex(K;St, n)Ct(K,T )dK +

∫ St

0

ηex(K;St, n)Pt(K,T )dK, (14)

where

ηex(K;St, n) =
n

K2

[
(n− 1) log

(
K

St

)n−2

− log

(
K

St

)n−1
]
. (15)

Moreover, the expected log stock return, equation (11), should be modified to the following

equation:

µ̃t,T = ωt,T + erf τ − D̃t,T

St

− 1− erf τ

2
M(2)t,T − erf τ

6
M(3)t,T − erf τ

24
M(4)t,T . (16)

The functional forms of equations (8) to (10) do not change.

Proof. See Appendix A.2. 2

Note that equations (14) and (15) are the same as the original BKM formulae. This is

because both our formulae in Proposition 3.2 and BKM’s original formulae are about the

payoff function log(ST/St)
n. However, in contrast to BKM, we assume that the underlying

asset pays dividends, and this modifies the mean of the log stock return, equation (16),

which now contains an additional term, −D̃t,T/St, reflecting the fact that the ex-dividend

expected return is lower than the cum-dividend expected return by D̃t,T/St.

3.2 Violation of MR: Black-Scholes IV and robust IV

Next, we investigate the behavior of BS-IV under the violation of MR. This is of impor-

tance because the previous literature typically interpolates and extrapolates Black and
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Scholes (1973) implied volatilities (BS-IVs) to obtain a continuum of option prices to

implement the BKM formulae and calculate RNMs. To provide an analytically tractable

discussion, we consider a situation where the underlying stock may violate MR, yet it

follows a log-normal distribution. We assume that the future stock price ST follows a

log-normal distribution under the Q-measure, that is,

ST ∼ Lognormal

(
log(St − e−rSτD̃t,T ) + rSτ − σ2τ

2
, σ2τ

)
, (17)

where rS is the continuously compounded risk-neutral expected return of the stock, erSτ =

EQ
t [Rt,T ], and σ is the constant volatility (i.e., annualized standard deviation) parameter.6

In the presence of market frictions, MR does not hold, and rS will differ from rf :

Rf
t,T + ωt,T = EQ

t [Rt,T ] = erSτ ̸= erf τ = Rf
t,T , (18)

where the first equality comes from equation (7).

Next, we calculate the price of options under this setting. To this end, we assume

that option prices satisfy MR, and thus option prices are given by

Ct(K,T ) = e−rf τEQ
t [(ST −K)+], and Pt(K,T ) = e−rf τEQ

t [(K − ST )
+], (19)

where (x)+ = max(x, 0). Then, the call option price is given by

Ct(K,T ) = e(rS−rf )τ × e−rSτEQ
t [(ST −K)+] = e(rS−rf )τBScall(St, K, τ, rS, D̃t,T , σ), (20)

where BScall(S,K, τ, r,D, σ) is the BS option pricing function with deterministic divi-

dends. The relation e−rSτEQ
t [(ST −K)+] = BScall(St, K, τ, rS, D̃t,T , σ) holds because the

left-hand side is the price of a call, in the case where the “risk-free rate” is rS. Similarly,

the put option price is given by

Pt(K,T ) = e(rS−rf )τBSput(St, K, τ, rS, D̃t,T , σ). (21)

A remark is in order regarding equations (20) and (21). Under the violation of MR,

the option pricing functions are a function of seven arguments (St, K, τ, σ, rf , D̃t,T and

6To show that rS is the continuously compounded risk-neutral expected return, we calculate the mean
of the log-normal distribution, equation (17). This yields

EQ
t [ST ] = exp

(
log(St − e−rSτ D̃t,T ) + rSτ

)
= erSτ (St − e−rSτ D̃t,T ) = erSτSt − D̃t,T .

Some more algebra shows that EQ
t [Rt,T ] = erSτ under the deterministic dividend D̃t,T assumption.

12



rS), rather than a function of six arguments, as in the case of the BS model. This is

because the risk-free rate, used to discount the future expected payoff, differs from the

continuously compounded expected stock return, when MR does not hold. The pricing

formulae boil down to the standard BS functions with deterministic dividends, in the

case where MR is satisfied (i.e., rS = rf ).

The BS-IV is defined implicitly via the following equations:

IV c
t = BS−1

call(Ct;St, K, τ, rf , D̃t,T ), and IV p
t = BS−1

put(Pt;St, K, τ, rf , D̃t,T ), (22)

where BS−1
call(C;S,K, τ, r, D̃) (BS−1

put(P ;S,K, τ, r, D̃)) is the inverse function of the BS

call (put) option function, viewed as a correspondence between the volatility parameter

and option price, given other parameters. The following Proposition shows the properties

of the BS-IV in the case where the call and put option prices are given by equations (20)

and (21), respectively.7

Proposition 3.3. (a) Let IV c
t (K) (IV p

t (K)) be the BS-IV of the call (put) option price

given by equation (20) (equation (21)), that is,

Ct(K,T ) = e(rS−rf )τBScall(St, K, τ, rS, D̃t,T , σ) = BScall(St, K, τ, rf , D̃t,T , IV
c
t (K)) (23)

Pt(K,T ) = e(rS−rf )τBSput(St, K, τ, rS, D̃t,T , σ) = BSput(St, K, τ, rf , D̃t,T , IV
p
t (K)), (24)

Then, IV c
t (K) and IV p

t (K) satisfy the following approximate equations, respectively:

IV c
t (K) ≈ σ +

ωt,T√
τRf

t,T

St

St − e−rf τD̃t,T

Φ(d1)

ϕ(d1)
, (25)

IV p
t (K) ≈ σ − ωt,T√

τRf
t,T

St

St − e−rf τD̃t,T

Φ(−d1)

ϕ(−d1)
, (26)

where ϕ(x) and Φ(x) are the probability density function and the cumulative density func-

tion of the standard normal distribution and

d1 =
log

St−e
−rf τ

D̃t,T

K
+ (rf +

σ2

2
)τ

σ
√
τ

. (27)

(b) When ωt,T = 0, then IV c
t (K) = IV p

t (K) = σ holds. On the other hand, when

7We define BS-IV via the BS model, which prevails in the case of frictionless markets, yet we use a
setting with frictions in the underlying asset to show the effect of frictions on BS-IV. Our approach is
not internally inconsistent. The fact that we use BS-IV does not mean that market option prices, and
the underlying asset price are not affected by frictions; the BS formula serves as a translation mechanism
between market option prices and IV, and it does not imply that the BS formula is the correct option
pricing formula.
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ωt,T is positive (negative), IV c
t (K) is greater (smaller) than σ for any strike and decreas-

ing (increasing) in K, whereas IV p
t (K) is smaller (greater) than σ for any strike and

increasing (decreasing) in K.

Proof. See Appendix A.3. 2

Proposition 3.3 showcases two interesting findings about the properties of the BS-

IV. First, in the case where the underlying violates MR, the BS-IV does not correctly

estimate the volatility parameter of the log-normal distribution.8 For instance, when

ωt,T is positive, the call (put) BS-IVs overestimate (underestimate) the true σ. Figure 1

manifests this finding by showing the IVs given by equations (25) and (26), as a function

of moneyness (strike to stock price ratio). We set τ = 1/8 (about 45 days), rf = 3%,

the annualized return wedge ωt,T/τ = 1%, the dividend-to-stock D̃t,T/St = 0.5% (i.e.,

4% annualized dividend yield), and σ = 20%.9 This pattern appears because call (put)

options are more expensive (cheaper) compared to the BS model case (i.e., rS = rf ),

when ωt,T > 0; a higher stock drift rS makes call (put) options more (less) likely to expire

in-the-money.

[Figure 1 about here.]

Second, in the case where MR is violated, the BS-IVs are not constant across strikes,

despite the fact that the risk-neutral distribution of the underlying is assumed to be log-

normal. For instance, in the case where ωt,T is positive, Proposition 3.3 (b) shows that

the call (put) IV curve is decreasing (increasing) in K. In this case, the IV skew is a result

of market frictions, and it would spuriously suggest that the underlying distribution is

not log-normal. This finding is related to Leland (1985) and Çetin et al. (2006), who also

show that market frictions may result in skewed IV curve, even if the underlying follows

a log-normal distribution.

To remedy the above two drawbacks of the conventional BS-IV (termed standard

BS-IV, hereafter), we propose the robust IV.

8Hentchel (2003) shows that the IV can be a biased estimate of the true volatility, due to measurement
errors in option prices, the underlying prices, the risk-free rate (which equals the expected stock return
under the MR assumption), and other parameters. Our result is related to his findings. In our case, the
bias can be interpreted as a result of using the wrong value for the expected stock return, when inverting
the BS function.

9Note that the numerical value of the wedge variable ωt,T is in line with the evidence we will present
in Section 4, which shows that the wedge of the S&P 500 may be as extreme as ±1%.
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Definition 3.1 (Robust IV). Let rS be the continuously compounded Q-expected stock

return, which differs from rf , if market frictions are present. Then, the robust IV, IVrob,

is defined implicitly via

e−(rS−rf )τCt(K,T ) = BScall(St, K, τ, rS, D̃t,T , IV
c
rob),

e−(rS−rf )τPt(K,T ) = BSput(St, K, τ, rS, D̃t,T , IV
p
rob).

(28)

We implicitly define the robust IV by equating the option price, adjusted by e−(rS−rf )τ ,

with the BS model option price, which uses rS rather than rf as an input. In contrast,

the standard BS-IV is obtained by equating the unadjusted option price with the BS

model price, which uses the rf as an input. In the case where the underlying satisfies

MR (i.e., rS = rf ), equation (28) boils down to the definition of the standard BS-IV.

This suggests that the robust IV generalizes the standard BS-IV by accounting for the

possible violation of MR.

The generalization of the standard IV to the robust IV is of importance because

the latter eliminates the two drawbacks of the standard IV discussed above, which arise

from violations of MR. First, the robust IV correctly estimates the volatility parameter

σ, when the underlying distribution is log-normal. This can be shown by comparing

equations (20), (21), and (28). Second, in the case where the underlying follows a log-

normal distribution, the robust IV is constant across strikes and equals σ, even when MR

is violated.

3.3 The effect of market frictions to RNMs: Simulation results

The violation of MR may affect the estimation of RNMs via two channels. The first

channel is the theoretical formulae used to compute them. The second channel is the IVs

used to obtain a continuum of option prices by interpolation/extrapolation, given that

option prices trade for discrete strikes. We conduct a simulation exercise to quantify the

effect of each channel to the estimation of RNMs.

For simplicity, we assume that the stock pays no dividends and the stock price follows

a log-normal distribution, equation (17). Therefore, the true MFIV, RNS, RNK of the

log stock return log(ST/St) are σ = 30%, zero, and three, respectively. We assume that

the stock may violate MR (i.e., rS ̸= rf ).
10 We set the current stock price St = 100,

10This setup is similar in spirit to Dennis and Mayhew (2009), who analyze how microstructural biases

15



the risk-free rate rf = 3%, the volatility σ = 30%, and the time-to-maturity τ = 1/12.

We consider three cases of the expected stock return rS: rS = rf , rS = rf + 3%, and

rS = rf − 3%.

We generate a set of option prices as follows. We assume that options trade at

K = 94, 95, . . . , 108. These strikes approximately cover the delta range from 0.2 to 0.8,

corresponding to the delta range in the OptionMetrics Volatility Surface file, which we

use in the subsequent empirical analysis. We calculate option prices, based on equations

(20), and (21). Then, we calculate the standard BS-IV of these options. Unless rS = rf ,

the standard BS-IV curve is not flat (Proposition 3.3). On the other hand, the robust IV

curve is flat at the level of σ = 30%.

In line with the standard estimation procedures in the literature (e.g., Stilger et al.,

2017), we interpolate the discrete option IVs by the cubic Hermite polynomial in the

moneyness-IV metric, and extrapolate IVs horizontally beyond the highest and lowest

strikes. We follow Stilger et al. (2017), and interpolate and extrapolate call and put option

IVs, separately. Then, we convert the interpolated IV curves to 1001 option prices over the

equally-spaced strikes in the moneyness range [1/3, 3]. Finally, we numerically calculate

the integrals in the BKM formulae, and calculate the RNMs. To implement these steps,

we have two choices regarding the type of IV to be interpolated, and two choices regarding

the type of the RNM formulae. These yield four estimation specifications, OS-, OR-, GS-,

and GR-RNMs. The first letter of the prefix stands for the type of the formulae (the

“Original” BKM formulae or the “Generalized” BKM formulae) and the second letter

stands for the type of the IVs used for the IV interpolation (the “Standard” IVs or the

“Robust” IVs).

Table 1 reports the result of the estimated RNMs for the four specifications. We

can see that the BKM formulae estimate MFIV and RNK accurately, even when MR

is violated. On the other hand, they mis-estimate RNS, when MR is violated. The

estimation error decreases, as we switch from the BKM to our generalised RNS formula.

Moreover, it becomes zero, when we also use the robust IV to compute option prices.

These results show that to estimate RNS accurately, one needs to modify the BKM

formulae by taking the violation of MR into account, and also use the robust IV for

interpolation, and extrapolation purposes.

affect the estimation of RNS, under the log-normality assumption.
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[Table 1 about here.]

Next, we explain how the use of BS-IVs contributes to the mis-estimation of RNS,

in the presence of market frictions. The extrapolation of the standard BS-IV biases the

extrapolated option prices, and this bias transmits to the power-n log return contract. To

fix ideas, we consider the case of a positive wedge, as an example. We employ Proposition

3.3, to simulate the call and put standard IV curves over a continuum of strike prices;

we treat them as the true, yet unobserved, option prices. Figure 2 depicts the two

respective “true” curves (dotted lines), respectively. Then, we treat the simulated IVs for

discrete strikes K = 94, 95, . . . , 108, as the observed IVs, and we interpolate (extrapolate

horizontally) across them (beyond the traded strikes); Figure 2 shows the two respective

“observed” curves (solid lines). We can see that the extrapolated call (put) IV line is

above (below) the true standard IV line. This shows that the extrapolation, in the space

of the standard IVs, overestimates (underestimates) the call (put) option prices if the

wedge is positive. The results are revered in the case where the wedge is negative.

[Figure 2 about here.]

The following Lemma examines the sign of the weighting function η(K;St, n), in

equation (13). This helps to explain how the overestimation (underestimation) of OTM

call (put) options transmits to the price of the power-n log return contract.

Lemma 3.1. For odd-degree power-n log return contracts, η(K;St, n) satisfies

η(K;St, n)


< 0 K/St < 1,

≥ 0 1 ≤ K/St ≤ en−1,

< 0 K/St > en−1.

(29)

For even-degree power-n log return contracts, η(K;St, n), satisfies

η(K;St, n)

≥ 0 K/St ≤ en−1,

< 0 K/St > en−1.

(30)

Proof. See Appendix A.5. 2

To simplify our discussion, we ignore the respective last cases in equations (29) and

(30), which refer to the far deep OTM call region K/St > en−1. This simplification is
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innocuous for empirical purposes; call option prices in this deep OTM region are typically

negligible, and do not much affect the calculation of the call integral in equation (12).

Equation (29) shows that the η function of the odd -degree power-n contract is neg-

ative in the put OTM region, and positive in the call OTM region. Therefore, both the

undervaluation of OTM put options, and the overvaluation of OTM call options, yield an

upward bias in the power-3 contract price, which affects the calculation of RNS. Therefore,

a positive wedge results in an upward bias in the estimated RNS, via the biases in OTM

option prices arising during the extrapolation process. On the other hand, equation (30)

shows that the η function of the even-degree power-n contract is always non-negative.

Consequently, the overvaluation in OTM call prices, and the undervaluation in OTM put

prices, yield an offsetting effect on the power-2 and power-4 contract prices, leaving these

prices largely unaffected. This explains why MFIV and RNK are largely unaffected by

the bias, which arises from extrapolating across BS-IVs.

3.4 A crude RNS measure and robust IV

In the previous section, we showed theoretically that the usage of the BS-IVs contributes

to mis-estimating RNS. In this section, we show further that it also biases a popular crude

measure of RNS, suggested by Xing et al. (2010) (XZZ). The XZZ measure is defined to

be the difference between the standard IVs of an OTM put and that of an ATM call,

XZZ = IV p
OTM−IV c

ATM ; a higher value of XZZ implies that the risk-neutral distribution

of the asset returns is skewed to the left. However, the XZZ measure may not be related

to RNS, in the case where MR is violated; this is of importance, as we will discuss in

Section 5.5. To show this, we decompose XZZ in two components:

XZZ = IV p
OTM−IV c

ATM = (IV p
OTM−IV p

ATM)+(IV p
ATM−IV c

ATM) = POMA−IV S, (31)

where POMA = IV p
OTM − IV p

ATM is the put out-minus-at IV skew measure (Doran and

Krieger (2010) and Fu et al. (2016)), and IV S = IV c
ATM −IV p

ATM is the implied volatility

spread (Bali and Hovakimian (2009) and Cremers and Weinbaum (2010), among others).

Under market frictions, the first component may not proxy RNS accurately, whereas

the second component introduces noise. In principle, POMA is a measure of the slope of

the put IV curve, and thus it could be regarded as a crude measure of RNS. However,

Proposition 3.3 shows that, under market frictions, POMA does not satisfy the elementary
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property that RNS should be zero, even if the underlying price follows a log-normal

distribution.11 Similarly, the IVS component is not related to RNS, given that it is the

difference between the call and put option IVs at the same strike. Moreover, Proposition

3.3 yields that a non-zero IVS arises in the case where MR is violated; given the property

of the cumulative standard normal density function Φ(x) + Φ(−x) = 1, subtracting

equation (26) from (25) yields

IV c
t (K)− IV p

t (K) ≈ ωt,T

Rf
t,T

St

St − e−rf τD̃t,T

1√
τϕ(d1)

=
St

Rf
t,TVBS(K)

ωt,T , (32)

where VBS(K) = (St − e−rf τD̃t,T )ϕ(d1)
√
τ is the BS vega (i.e., the sensitivity of option

prices to the change in the volatility parameter). Therefore, a non-zero IVS arises, if

and only if the return wedge is non-zero, that is, if and only if MR is violated.12 This

contaminates XZZ further, as proxy of RNS.

However, the XZZ measure will proxy RNS accurately, if it is calculated using the

robust IV, rather than the standard IV. First, as we have discussed at the end of Section

3.2, POMA proxies RNS more accurately, once it is calculated based on the robust IV

curve. This is because a zero robust IV slope corresponds to the case where the asset

price is distributed log-normally. Second, the following Proposition shows that IVS equals

zero, once we use the robust IVs, and hence it does not contaminate the XZZ measure

as a proxy of RNS.

Proposition 3.4. Assume that call and put option prices satisfy MR, that is, they satisfy

the risk-neutral valuation formulae (equation (B.25)). Let IV c
rob and IV p

rob be the robust

IVs calculated from the respective prices of call and put options, which have the same

strike price. Then, IV c
rob = IV p

rob, regardless of the distribution of the underlying asset.

Proof. See Appendix A.4. 2

11Existing literature reports either insignificant predictive power of POMA (Fu et al., 2016), or a
positive relation between POMA and future returns (Doran and Krieger, 2010). This suggests that the
POMA component should not be the source of a negative relation between XZZ and future returns,
documented by previous literature.

12Note that one can show that equation (32) holds regardless of the distribution of the future underlying
price.
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4 Data and estimation results

4.1 Dataset

We obtain daily option prices and IVs for January 1996 to December 2017 from the two

OptionMetrics Ivy DB (OM) data files, the Volatility Surface (VS) file, and the Stan-

dardized Options (SO) file. OM estimate the IV surface of call options and put options

separately, and these two files provide the estimated IVs and corresponding European

option prices at standardized maturities such as 30, 60, 91, 182, and 365 day-to-maturity.

We use 30-day-to-maturity data because subsequently we use the estimated RNS as a

sorting variable to construct monthly-rebalanced portfolios. The VS file provides option

IVs, option prices, and strike prices at 13 standardized delta-denominated strikes (calls

at 0.2, 0.25, . . . , 0.8 delta and puts at -0.2, -0.25, . . . , -0.8 delta). The SO file provides

call and put option prices at the forward at-the-money (ATM), K = Ft,T = erf τSt− D̃t,T .

We also obtain the underlying price, and the risk-free rate data from the OM database.

We obtain stock return data from CRSP. We also calculate the market beta, firm

size, book-to-market, profitability, and investment characteristics from CRSP and Com-

pustat databases. See Appendix C.1, for the detailed description of these characteristics

variables. Our universe of individual equities is the U.S. common stocks, which trade

at NYSE/Amex/NASDAQ. To obtain this universe, we link the OM database with the

CRSP database, and keep only the common stocks (CRSP SHRCD: 10 or 11) traded at

NYSE/Amex/NASDAQ (CRSP EXCHCD 1, 2, or 3). Appendix C.2 explains how we

link the OM, CRSP, and Compustat databases. Finally, we obtain standard risk factors

from the authors’ websites.

4.2 Option-implied variables: Estimation

To operationalize the estimation of generalized RNMs, we need a proxy of the return

wedge, ωt,T . To this end, we employ the Spot Synthetic Difference (SSD) measure pro-

posed by HS. SSD is a properly scaled deviations from put-call parity and HS show that

SSD proxies the return wedge, ωt,T , well. We estimate SSD for U.S. individual common

stocks traded at NYSE/Amex/NASDAQ, and for the S&P 500 index. To calculate the

synthetic stock prices and SSD, we use the pairs of put and call prices with 30 day-

to-maturity at the forward ATM strike, recorded in the OM SO file.We back out the

20



dividend payment D̃t,T from the forward price recorded in the OM SO file. Appendix

C.3 provides the detailed estimation procedure of SSD.13

We estimate the RNMs of individual stocks via the original BKM formulae, adjusted

for dividend payments (O-RNMs), and via the generalized BKM formulae (G-RNMs),

separately. This allows us to examine the effect of the violation of MR in the underlying,

to the accurate estimation of RNMs. To estimate the O-RNMs, we set ωt,T equal to

zero in equation (11), and we use the formulae presented in Proposition 3.1; Appendix

C.4 provides the details. Note that, strictly speaking, the O-RNMs estimation formulae

do not coincide with the original formulae in BKM, due to the modification regarding

dividend payments. In Section 5.1, we will document that this modification does not

drive our empirical findings.

We estimate G-RNMs, just as we do for O-RNMs, with the difference being that we

(i) use the estimated 30-day SSD for ωt,T in equation (11), and (ii) interpolate the robust

IV, instead of the standard IV; our simulation result in Section 3.3 shows that using the

standard IV may bias estimated RNMs. To obtain the robust IVs, we use option prices

in the SO file, in conjunction with equation (28). In Section 5.1, we disentangle the

effects of the IV input, and the employed formulae to the estimation of RNMs. We treat

O-RNMs as missing, if the estimated SSD and G-RNMs are missing. We also discard

very few month-stock IV observations, if either the calls’, or puts’ strikes, recorded in the

OM VS file, are not strictly monotonic in deltas.

Finally, we calculate two IV slope measures, as follows. First, we calculate the original

XZZ measure as XZZo = IV p(−0.2) − IV c(0.5), where IV c(d) (IV p(d)) stands for the

standard call (put) IV, at option’s delta equal to d. We obtain the 30-day-to-maturity

IVs from the OM VS file. Next, we calculate the robust XZZ measure based on the

XZZ formula, yet we use the robust IVs, that is, XZZr = IV p
rob(−0.2)− IV c

rob(0.5). To

obtain the robust IVs, we use equation (28), where we extract the option prices from the

corresponding implied volatilities obtained from the OM VS file. Similar to the estimation

of RNMs, we treat XZZo missing, if the estimated SSD and XZZr are missing.

13Note that the theoretical formulae to estimate SSD and RNMs rely on European option prices,
whereas exchange listed U.S. options are American style. However, the use of the OM VS and SO files
circumvent this problem; these files provide the IVs and corresponding European option prices adjusted
for the early exercise premium. Our treatment is in line with recent studies using the OM dataset (e.g.,
Martin and Wagner, 2018).
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4.3 Estimated SSD: Do U.S. stocks violate MR?

4.3.1 S&P 500 index

Figure 3a depicts the daily estimated 30-day-to-maturity SSD of the S&P 500 index. We

can see that the estimated SSD is highly volatile; the proportion of SSD being positive is

about 48% in our sample, that is, the estimated SSD takes positive and negative values

with almost the same frequency. This suggests that the Q-expected return of the S&P

500 index is greater, or smaller, than the risk-free rate with almost the same probability.

This result is in contrast to the results obtained by previous studies, which test MR

via the implied stock approach. These studies find that S∗
t > St for more than 90% of

samples, which would imply a positive SSD for most of the time; this correspondence

between SSD and the implied stock price approach stems from equation (B.20), which

holds under the key assumption of the implied stock approach. As we have shown in

Section B, the result obtained by the previous literature is likely to reflect a negative IV

skew, rather than a violation of MR.

Given the high volatility of the daily SSD, to visualise the pattern of the dynamics

of SSD, Figure 3b plots the 21-trading day moving average of the absolute value of the

SSD, which measures the degree of the departure of the index from MR (see equation

(7)). Two remarks can be drawn. First, SSD takes extreme values periods of market

distress, such as the collapse of the IT bubble (around October 2000), and the market

meltdown over the recent financial crisis (around October 2008). This is expected given

that over these periods, markets frictions, and hence violations of MR, intensify. This

pattern is consistent with the findings in HS regarding the SSD of individual stocks; they

find that individual stocks tend to take more extreme SSD values during periods where

the market is distressed.

Second, apart from the sporadic extreme values of SSD, the S&P 500 index’s SSD

exhibits a salient downward trend in absolute value terms. In particular, until 2003, the

absolute value of SSD lies between 1% to 3% per year, whereas after 2003, it decreased

to less than 1% for most of times. This pattern is in line with HS. They show theoreti-

cally that the absolute value of SSD is less than the round-trip transaction costs. This

implies that the decline in the absolute SSD value is related to a decline in transaction

costs. Indeed, transaction costs decreased during early 2000s, due to various institutional
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reforms.14

[Figure 3 about here.]

Next, we assess the statistical significance of the violation of MR. We test the statis-

tical significance of the time-series mean of the absolute SSD by means of a 95% (±2σ)

confidence interval; the absolute value of SSD measures the magnitude of the deviation of

the risk-neutral expected return from the risk-free rate (equation (7)), that is, it measures

the magnitude of the violation of MR.15

The 95% confidence interval of the mean value of the absolute SSD is 1.27%± 0.08%

per year, when we use the full sample of SSD values. Given the aforementioned salient

decline in the absolute SSD value, we also split our sample into two subsamples spanning

1996 to 2002, and 2003 to 2017, respectively. The ±2σ confidence interval of the former

period is 1.98% ± 0.1%, whereas that of the latter period is 0.94% ± 0.06%. Therefore,

the mean absolute SSD is statistically different from zero in both periods, and it is also

economically non-negligible (e.g., compared to the U.S. equity premium, which Fama and

French, 2002 estimate as 4.32% per year).

4.3.2 Individual equities

Next, we investigate the SSD of individual equities. We calculate SSD for 12.2 million

stock-day observations from 1996 to 2017, for 6,824 distinct stocks. This yields, on

average, SSD values for about 2,200 stocks, on each trading day. Table 2, Panel A,

reports the summary statistics of the daily SSD. We can see that the SSD exhibits large

variations; the standard deviation is 15.9% per year, and the range from fifth to 95th

percentiles reaches 31.0% per year. This suggests that the SSD can take an economically

large value. Compared to the magnitude of variation, the mean and median of the SSD are

14For example, Green et al. (2017) argue that “the adoption of Reg. FD in October 2000, and the
decimalization of quotes in January 2001” reduced “effective spreads, price impact, and trading costs.”
They also point out that the introduction of the autoquoting software by NYSE between January and May
2003 “led to dramatic reductions in trading frictions and costs” (Green et al., 2017, p.4424). Similarly,
French (2008) documents that the per transaction “trading costs” of passive investment, backed out from
securities firms’ commissions and trading gains data, decreased by half from mid-1990s to 2000s.

15We do not examine the mean of the time-series of the raw SSD. This is because a negligible time-
series mean SSD should not be interpreted as if the magnitude of SSD is always negligible, and hence
that the stock always satisfies MR. For example, the mean of the raw estimated SSD can be close to zero,
if it takes large positive and negative SSD values over time, yet with similar frequency. The absolute
value of SSD (the scaled deviations from put-call parity) is similar in spirit to the market dislocation
index proposed by Pasquariello (2014), in that it is calculated based on the absolute value of deviations
from the law of one price.
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close to zero (-1.1%, and -0.6% per year, respectively), implying that the individual stock

SSD take positive and negative values, with almost the same probability. Regarding the

absolute value of SSD, which reflects whether MR holds for individual stocks, the mean

and median are 6.8% and 2.8% per year, respectively. This implies that MR is violated

for these stocks, that is, market frictions have an economically non-negligible impact on

the expected return of individual stocks. Panel B reports the summary statistics of the

SSD over the end-of-month trading dates. We can see that the summary statistics are

qualitatively the same with those obtained from using the daily SSD.

[Table 2 about here.]

Similar to the S&P 500 index case, we test for each stock, whether MR holds by

assessing whether its time-series mean absolute SSD statistically differs from zero. We

adopt a critical value of three for the t-test. Thus, we set a high hurdle to reach any

conclusions on the significance of SSD. In addition, we record the number of stocks which

violate MR, and at the same time their respective absolute SSD is greater than a reference

point. This allows us to assess the frequency, as well as the magnitude, of the violation

of MR. We consider four alternative values for the reference point: zero, 1%, 2%, and 3%

per year (the zero reference point corresponds to testing whether the MR is violated).

The left part of Table 2, Panel C, reports the results where the mean absolute SSD

is computed over the daily SSD. We calculate the mean absolute SSD for three groups

of stocks, separately, (stocks with at least 21, 1,200, and 2,500 non-missing SSD obser-

vations). This serves as a robustness check of any effect of the number of non-missing

SSD observation to the calculation of the mean absolute SSD. We can see that the mean

absolute SSD is significantly greater than 1% per year for virtually all stocks, regardless

of the number of non-missing SSD observations. Moreover, about 75% of four stocks

with at least 21 valid observations, have a mean absolute SSD greater than 3% per year.

In short, this result suggests that almost all stocks have significantly positive SSD (i.e.,

violating MR). Moreover, for a large part of stocks, the magnitude of the violation of MR

is economically sizeable.

We repeat the same exercise, using only the end-of-month SSD. We report the re-

sults in the right part of Panel C. Compared to the daily observations case, there is a

smaller proportion of stocks which have statistically significant positive mean absolute
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SSD. This is not surprising; the monthly dataset contains far less observations, and hence

the standard deviations would be larger. Nevertheless, the implication is the same with

the results from the analysis using the daily observations. About 90% of the stocks have

a mean absolute SSD greater than 1%, and about 40% of the stocks have a mean absolute

SSD greater than 3%.

These results, in conjunction with the findings in HS, strongly suggest that individual

stocks’ expected returns are affected by market frictions, that is, individual stocks’ return

wedge is not negligible, and hence individual stocks frequently violate MR.

4.4 Generalized RNMs: Summary statistics

As a preliminary step, for any given RNM, we provide summary statistics, and com-

pute the correlation between O-RNM and G-RNM to assess the effect of the violation

of MR in the underlying on the estimated RNMs. We report the summary statistics of

end-of-month observations, since we use end-of-month RNMs in the subsequent monthly-

rebalancing portfolio analysis. Our untabulated results confirm that there are no quali-

tative differences in the summary statistics, if we use daily observations.

Table 3, Panel A, reports the descriptive statistics of SSD and the estimated RNMs.

We also report the difference between O-RNMs and G-RNMs (e.g., ∆MFIV equals O-

MFIV minus G-MFIV). This difference can be interpreted to be the bias in the estimated

O-RNMs, resulting from ignoring the violation of MR. We calculate SSD and estimate

RNMs for 582,796 month-stock observations, over a 264 months period from January 1996

to December 2017. On average, the SSD and estimated RNMs are available for about

2,200 stocks in each month. The standard deviation of SSD is sizeable, indicating sizeable

violations of MR. The median of ∆MFIV, ∆RNS, and ∆RNK are close to zero (-0.02,

-0.01, and 0.01, respectively). This implies that the bias in the O-RNMs takes positive

and negative sign by almost the same probability. Next, we focus on the ratio of the

standard deviation of ∆RNM, and that of the respective G-RNM. This ratio of standard

deviations can be interpreted as a rough measure of the “noise-to-signal” ratio; we view

the decomposition O-RNM = G-RNM + ∆RNM, as the decomposition of O-RNM into

the true RNM and the bias term. The ratio of the MFIV is about 6% (∼ 1.52/26.68), that

of RNS is about 48% (∼ 0.23/0.48), and that of RNK is 34% (∼ 0.39/1.15). Therefore,

the impact of bias in the estimated O-RNMs is greater for RNS.
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Table 3, Panel B, reports the pairwise Pearson and Spearman correlations between

O-RNMs and G-RNMs, as well as those between ∆RNM and SSD. We can see that O-

RNMs and G-RNMs are almost perfectly correlated for MFIV (1.00 for both Pearson

and Spearman coefficients), and for RNK (0.94 and 0.96 for Pearson and Spearman

coefficients, respectively). Therefore, the SSD-adjustment has a negligible impact on the

estimated MFIV and RNK. On the other hand, in the case of RNS, the two correlation

coefficients are 0.90 and 0.89, respectively. Even though these values are still high, in

Section 5, we show that the difference between O-RNS and G-RNS creates significant

differences in their ability to predict the cross-section of future stock returns.

We can also see that the correlation between SSD and RNMs takes its highest values

for O-RNS (0.36 and 0.34), whereas it is almost zero for G-RNS. Moreover, the correlation

of SSD with ∆RNM takes its highest value for ∆RNS (0.82, and 0.97). This suggests

that the correlation between SSD and O-RNS stems from the correlation between SSD

and the “bias” term in the O-RNS, due to the violation of MR, ∆RNS.

[Table 3 about here.]

5 Predictive power of the risk-neutral skewness

In Section 4.4, we have found that the violation of MR in the underlying affects mostly

RNS, among the three RNMs. In this Section, we investigate further whether the differ-

ence between G-RNS and O-RNS is economically significant, too. We find that O-RNS

and G-RNS differ in terms of their respective predictive power for future stock returns.

This indicates that the violation of MR is economically significant, for the purposes of

computing RNS. We also investigate the predictive power of an alternative measure of

RNS, Xing et al.’s (2010) IV slope measure, as a robustness check.

5.1 Predictive power of O- and G-RNS: Baseline analysis

We examine whether O-RNS and G-RNS predict stock returns cross-sectionally, by means

of portfolio sort analysis. At the end of each month, we sort stocks into decile portfolios

based on the estimated O-RNS and G-RNS, separately. For each estimator of RNS, we

form equally-weighted, and value-weighted decile portfolios. We also form the long-short

spread portfolios, where we go long in the portfolio with the highest RNS, and go short
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in the portfolio with the lowest RNS. Table 4 reports the average post-ranking returns

of the equally- and value-weighted decile portfolios, formed based on the estimated O-

RNS and G-RNS, separately. It also reports the average post-ranking returns, and the

risk-adjusted returns (alpha) of the high-minus-low spread portfolios with respect to the

CAPM, Fama and French (1993) three-factor model (FF3), Carhart (1997) four-factor

model (FFC), the Fama and French (2018) five- and six-factor models (FF5 and FF6),

Hou et al. (2015) q-factor model (q4), and the Stambaugh and Yuan (2017) mispricing

factor model (SY).

Regarding the results based on sorting stocks on O-RNS, we can see an increasing

monotonic relation between O-RNS and the decile portfolio returns, for both the equally-

and value-weighted portfolios. As a result, the average returns of the equally- and value-

weighted long-short portfolios are 114 bps and 79 bps per month, respectively. These

values are statistically highly significant (the t-statistics are greater than 3.5). Moreover,

the alphas of the spread portfolios are significant and positive; their t-statistics are greater

than three in most of the cases, which is the recommended threshold by Harvey et al.

(2016); the only exception occurs for αFF5 and αq4 of the value-weighted spread portfolio.

The positive sign of the alphas is in line with the results of recent studies (e.g., Stilger

et al., 2017; Borochin and Zhao, 2018; Chordia et al., 2019).

[Table 4 about here.]

On the other hand, the evidence for the predictive power of G-RNS is much weaker,

in the case where we sort stocks on G-RNS. The t-statistics of the average returns and

alphas do not exceed three (with the exception of αSY of the equally weighted portfolio),

which is the threshold value for t-statistics set by Harvey et al. (2016). Moreover, all

value-weighted alphas are insignificant at a 1% level, and they are insignificant even at

a 5% level, except αFFC . These results suggest that the G-RNS does not predict future

stock returns, given the recent literature on addressing data snooping concerns, which

recommends a high threshold t-statistics value (e.g., Harvey et al., 2016), and a value-

weighted portfolio construction (e.g., Bali et al., 2016; Hou et al., 2018).

Table 5 reports the factor loadings obtained from regressing the returns of the value-

weighted spread portfolios sorted by O-RNS and G-RNS, separately, on a number of

specifications of factor models. We can see that there is no qualitative change in the
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magnitude of the factor loadings between the O-RNS-sorted and G-RNS-sorted spread

portfolios. Thus, the significant change in alphas of the long-short portfolio, when switch-

ing from the O-RNS to the G-RNS sorting criterion, is not caused by the change in the

exposure of the two portfolios to standard risk-factors.

[Table 5 about here.]

The difference in the predictive ability of O-RNS and G-RNS may stem from two

sources: the different formulae used to compute RNS, and/or the difference in the IVs

used at the interpolation and extrapolation stage. We disentangle the effect from these

two sources by estimating RNS in four different ways: OS-, OR-, GS-, and GR-RNS. The

first letter of the prefix stands for the type of the formula (“Original” or “Generalized”

BKM formula). The second letter of the prefix stands for the type of the IVs (“Standard”

IVs or “Robust” IVs).Then, we construct long-short spread portfolios by sorting stocks

into decile portfolios, based on these four alternative RNS estimates. Figure 4 shows the

t-statistics of the average return and alphas of the long-short spread portfolios. We can

draw three remarks. First, the magnitude of t-statistics decreases from OS-, OR-, GS-, to

GR-RNS. This pattern suggests that both channels (the RNS formula and the IV) con-

tribute to the decrease in the predictive power of RNS, in line with our simulation result

in Section 3.3. Second, in the case of the theoretically consistent with market frictions

GS-RNS, the average return and all alphas, but FFC, become statistically insignificant,

when we apply the criteria to address data mining concerns. Third, this insignificance

becomes more pronounced when GR-RNS is used. These findings suggest that the pre-

viously documented ability of O-RNS (OS-RNS) to predict stock returns, arises because

the violation of MR had not been taken into account in both the RNS formula, as well

as in the computation of IVs.

[Figure 4 about here.]

5.2 Predictive power of O- and G-RNS: Robustness tests

We conduct further robustness tests to assess whether the predictive power of RNS ceases

to exist, once we take into account the violation of MR. First, we run Fama and MacBeth

(1973) (FM) regressions. At the end of each month, we conduct a cross-sectional regres-

sion, where we regress the stock returns during the succeeding month on the estimated
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RNS, and other firms’ and stocks’ characteristics. Then, we report the time-series average

of the estimated cross-sectional intercepts, as well as the coefficients of the characteristic

variables with their respective t-statistics. At any point in time, we conduct two types of

regressions for the cross-sectional regression: the ordinary least square (OLS) regression,

and the value-weighted least square (VWLS) regressions employed by Green et al. (2017).

OLS- and VWLS-based FM regressions can be viewed as the counterparts of the equally-

weighted, and value-weighted portfolios in the portfolio analysis, respectively. Therefore,

given the recent literature on data-snooping concerns, it is desirable to examine the sta-

tistical significance of O-RNS and G-RNS, under the VWLS regression, too (see also a

related discussion in Hou et al., 2018).

Table 6 reports the results from the FM regressions. Columns (1) to (4) report the

results, including O-RNS as a regressor. The results from the two univariate regressions

of O-RNS, Columns (1) and (2), show that O-RNS is a statistically significant predictor

of stock returns. Moreover, Columns (3) and (4) show that this predictive power remains,

even after controlling for standard characteristic variables. These results corroborate our

portfolio sort result based on O-RNS, as well as the finding in the previous literature on

the predictive ability of O-RNS (e.g., Stilger et al., 2017; Borochin and Zhao, 2018).

Next, we examine the predictive power of G-RNS in the FM setting. Columns (5)

and (6) show that G-RNS does not predict stock returns in the univariate regression,

in line with our finding from the portfolio sort analysis. The results in the multivariate

regressions are mixed; G-RNS becomes significant under the OLS regression (Column

(7)), whereas it remains insignificant under the VWLS regression (Column (8)). These

results are analogous to our portfolio sort result; we find that several alphas of equally-

weighted G-RNS spread portfolio are significant, whereas those of value-weighted G-RNS

spread portfolio are not. Therefore, the results from the FM regressions suggest that

G-RNS does not predict future stock returns, once we apply criteria which address data

snooping concerns.

[Table 6 about here.]

Second, we repeat the portfolio sort analysis of Section 5.1 by forming quintile, instead

of decile portfolios. Each quintile portfolio contains twice as many stocks as a decile

portfolio. As a result, quintile portfolios are more diversified, and hence less affected
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by possible outliers. Table 7 reports the results. We can see that the O-RNS-sorted

spread portfolios earn positive and significant average return and alphas, whereas the

G-RNS-sorted spread portfolios do not earn significant returns, just as it was in the case

when decile portfolios were formed. This suggests that our baseline result is not driven

by possible outliers.

[Table 7 about here.]

Finally, we examine whether our treatment of dividend payments in the estimation of

RNS affects its predictability. So far, we have found that O-RNS predicts stock returns,

using a modified BKM RNS formula which takes dividends into account. This is in line

with the finding of the previous literature, which uses the original BKM formulae, whose

derivation assumes non-dividend paying stocks. To further confirm that the (lack of the)

predictability of O-RNS (G-RNS) is robust to the treatment of dividend payments, we

estimate RNS by ignoring the dividend payment adjustment; we re-estimate the O- and

G-RNS by setting D̃t,T = 0 (i.e., assuming all stocks pay no dividends,), and repeat

the portfolio sort analysis. Even though this is a theoretically imprecise treatment, this

exercise would expedite the comparison between our results and those in the previous

literature, which does not consider dividend payments in the calculation of RNS.

Table 8 reports the results. As we can see, there are no qualitative changes in the

predictive power of the O-RNS and G-RNS; O-RNS predicts future returns, whereas the

G-RNS does not. This result suggests that our findings on the (lack of the) predictability

of O-RNS (G-RNS), as well as the findings in the previous literature are not affected by

whether dividend payments are taken into account to estimate RNS.

[Table 8 about here.]

We also estimate the RNS of the ex-dividend return, using Proposition 3.2. Then,

we repeat the portfolio sorting analysis described in Section 5.1, by using the estimated

O- and G-RNS of the ex-dividend returns. Our untabulated results do not differ from

the results obtained from the baseline analysis. This was expected because, under the

deterministic dividend assumption, the distribution of the ex-dividend return coincides

with that of the cum-dividend return shifted by a deterministic amount, and hence the

higher order moments do not change.16

16Note that the moments of the ex-dividend and cum-dividend log returns may differ due to the non-
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5.3 SSD and the predictive power of O-RNS

So far, we have confirmed that O-RNS predicts future returns, whereas G-RNS does

not. We conjecture that O-RNS predicts future returns solely because its estimation

error, ∆RNS, predicts stock returns. This is because ∆RNS arises from the violation of

MR, that is, from the presence of market frictions manifested by the violation of MR.

Therefore, ∆RNS is expected to be correlated with SSD. HS find that SSD predicts stock

returns, thus ∆RNS should also predict stock returns. This conjecture is in line with the

lack of the predictability of G-RNS; G-RNS is free from the bias caused by the violation

of MR, and this explains the lack of correlation between G-RNS and SSD, as the results

in Table 3 have shown.

We confirm our conjecture by means of three tests. First, we repeat the portfolio

sorting analysis, where we sort stocks in decile portfolios using ∆RNS as a sorting vari-

able. Given the almost perfect rank correlation between ∆RNS and SSD (Table 3), we

effectively sort stocks based on SSD, which HS document that it has predicts stock re-

turns.17 Table 9 shows the results. In line with the predictive ability of SSD, we can see

that ∆RNS predicts stock returns. Moreover, its predictive power is stronger than that

of O-RNS; t-statistics of the equally-weighted spread returns and alphas reach a value

of nine, and those of the value-weighted ones range between values of four to five. This

result implies that the predictive power of O-RNS is “condensed” in the ∆RNS part,

given the reported inability of G-RNS to predict stock returns.

[Table 9 about here.]

Next, we investigate the relation between the predictive power of O-RNS and the

degree of the violation of MR. If the predictive power of O-RNS stems from the violation

of MR, we expect that O-RNS will not have predictive power among stocks which do not

severely violate MR (i.e., SSD is close to zero). On the other hand, we expect that the

predictive power of O-RNS will be stronger among stocks which severely violate MR. We

examine these conjectures by means of a dependent bivariate portfolio sort. We first sort

stocks into quartile portfolios based on the absolute value of SSD; the absolute value of

linearity of the logarithm function. However, this effect is negligible, given a typical dividend-to-stock
price ratio.

17HS document that the alphas of the SSD-sorted value-weighted decile spread portfolio are about 180
bps per month, and their t-statistics are greater than five. This result suggests that the return predictive
power of SSD is stronger than that of O-RNS reported in Table 4.
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SSD measures the degree of the violation of MR. Then, within each one of four subgroups,

we form quartile portfolios by sorting stocks based on O-RNS, and we calculate the post-

ranking average return of the spread portfolios (highest O-RNS minus lowest O-RNS).

Table 10 reports the average returns and alphas of the highest O-RNS minus lowest O-

RNS spread portfolios, for any given portfolio constructed on absolute SSD; we consider

equally weighted and value weighted portfolios. The results confirm our two conjectures.

The average returns and alphas are greatest for the highest |SSD| bin, and lowest for

the lowest |SSD| bin. Therefore, O-RNS exhibits stronger predictive power among the

stocks which are subject to severer violations of MR. Specifically, the results for the lowest

|SSD| bin (the first and fifth Columns) indicate that O-RNS does not predict future stock

returns among the stocks in this bin; all returns and alphas, but αSY of the equally-

weighted portfolio, are insignificant at 5% level (αSY of the equally-weighted portfolio is

insignificant at a 1% level).18 In line with our conjecture, this result suggests that O-RNS

does not predict stock returns, when MR is not (severely) violated. Its predictive power

increases with the level of absolute SSD, thus confirming that the predictive power of

O-RNS reflects the presence of market frictions; in the case where there were no frictions,

O-RNS would not predict future stock returns.

[Table 10 about here.]

Finally, we provide direct evidence that the predictive power of O-RNS stems from

SSD by employing the SSD-adjusted return regression proposed by HS. HS show that in

the case where the pricing kernel m is described by a linear combination of risk factors

f , the intercept α of the following regression of the SSD-adjusted excess return on risk

factors,

Rt,T −Rf
t,T − SSDt,T = α + β′fT + εT , (33)

should be zero. We examine this hypothesis for each one of the O-RNS-sorted value-

weighted decile portfolios, and for the associated long-short spread portfolio. Failing to

reject this hypothesis, would suggest that the significant alphas of the SSD-non-adjusted

returns of the O-RNS-sorted portfolios, reported in Table 4 (Panel B), stem from the

presence of market frictions, that is, from a non-zero SSD.

18We also conduct three-by-three and five-by-five double sorting exercises, and we confirm that results
do not change qualitatively.
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Table 11 reports the results, where we regress the SSD-adjusted returns of each one

of the O-RNS sorted value-weighted decile portfolios, as well as that of the long-short

spread portfolio, on a set of factors. In line with the positive correlation between SSD and

O-RNS, the first row shows that the portfolio average SSD is monotonically increasing.

However, the alphas (intercepts) of the SSD-adjusted excess returns of decile portfo-

lios are almost always insignificant. In addition, the spread portfolio’s alphas are now

insignificant, even though the non-SSD adjusted case (Table 4, Panel B) exhibits signifi-

cant alphas. The fact that the SSD-adjustment removes the significant predictive power

of O-RNS implies that the predictive power of the O-RNS is driven by the SSD compo-

nent, i.e. by the effect of market frictions on the expected returns, and it is not driven

by (omitted) risk factors. This corroborates our previous finding that the predictability

of the O-RNS stems from its correlation with SSD.

[Table 11 about here.]

5.4 Predictability of O-RNS: Implications of our findings

In this subsection, we explore further implications of our findings with respect to the

ongoing debate on the mechanism to explain the predictive power of O-RNS (limits-of-

arbitrage versus informed option trading explanation). Our findings, so far, support the

limits-of-arbitrage mechanism as an explanation of the predictive power of O-RNS, and

they corroborate previous evidence that the predictability of O-RNS is stronger among

stocks which face relatively larger market frictions (e.g., Stilger et al. (2017), Chordia

et al. (2019)).

However, our approach to explain the predictive power of O-RNS is distinct from

that taken by the existing limits-of-arbitrage-based explanations. First, we acknowledge

that market frictions violate MR, and we provide a new formula to estimate RNS. The

previous literature is subject to an inconsistency: it explains the predictive power of O-

RNS by recognising that frictions exist, yet it uses the O-RNS BKM formula, which is

derived under the assumption that no frictions exist. Second, our SSD-based explanation

can accommodate both the negative and positive informational content of O-RNS, with

respect to future stock returns.19 This is in contrast to the explanations based on short-

19Our empirical findings indicate that the SSD, and the associated bias in O-RNS, take both positive
and negative values with roughly the same probability. Given that SSD has an “alpha” interpretation
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sale constraints and downside risk (e.g., Stilger et al. (2017), and Gkionis et al. (2018)),

which can explain negative informational content of O-RNS only.

We examine further whether the predictive power of O-RNS is more pertaining to

the market frictions, than the informed option trading explanation. Under the informed

option trading story, we expect that the prices of options (and hence RNS) with zero op-

tion trading volume, should have less informational content (i.e., lower predictive power),

than these of traded options. To examine this conjecture, on each end-of-month trading

day, we group stocks into two subgroups: stocks whose options have non-zero aggregate

trading volume on that date, and remaining zero option trading stocks.20 Within any

given option trading volume category, we sort stocks in decile value-weighted portfolios,

based on O-RNS. We calculate the monthly post ranking returns of these portfolios, as

well as these of the spread portfolio.

Table 12 reports the results. We can see that the average return and alphas of the

spread portfolio are greater for the non-traded options subgroup. The informed option

trading and option trading demand stories are at odds with this empirical pattern. On the

other hand, the friction-based story can explain the greater predictive power among non-

option trading stocks. Table 12 shows that stocks with non option trading are smaller,

have wider bid-ask spread, and are less liquid compared to those with non-zero option

trading, that is, stocks with zero option trading tend to face larger market frictions.

In line with these stock characteristics, the portfolio average SSD of the short (long) leg

takes more negative (positive) value among the non-traded subgroup, implying that these

stocks are affected more by the violation of MR than those with non-zero option trading.

Our finding is analogous with Goncalves-Pinto et al. (2017), who find that their option-

based return predictor, termed DOTS, does not exhibit a different level of predictability

among stocks with zero and non-zero option trading volume.

[Table 12 about here.]

(i.e., the expected stock return adjusted for the covariance risk premium, see HS), this implies that
O-RNS can signal both future outperformance and underperformance, depending on the sign of SSD.

20We use the aggregate option trading volume, across all strikes and maturities of both call and put
options, as the trading activity indicator, for the following reasons. First, the IVs, and corresponding
option prices, are obtained from the interpolated volatility surfaces. As a result, there are no trading
volume data for each option price and IV. Second, OM estimates volatility surfaces using all option data
over all available strikes and maturities. The aggregate trading volume is a consistent measure with this
practice. Finally, we focus on a short-term horizon. Hence, the aggregate trading volume is a good proxy
of the horizon of our interest, since short-term options are relatively heavily traded.
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Two final remarks are in order regarding the debate on the mechanism of the predictive

ability of O-RNS. First, admittedly, the validity of the limits-of-arbitrage story for the

O-RNS predictive power mechanism is not accepted universally. For example, Chordia

et al. (2019) conduct dependent bivariate portfolio sort exercises, where they first control

for either Amihud’s (2002) illiquidity measure, or the idiosyncratic volatility (IVOL), and

then they sort stocks on O-RNS in bins. They find that O-RNS retains its predictive

power, even in the lowest Amihud and IVOL bins, that is, among stocks which face

low degree of limits-of-arbitrage. Thus, they conclude that limits-of-arbitrage cannot

fully account for the RNS-return relation. However, our result in Table 10 suggests the

opposite story. Our bivariate portfolio sort analysis resembles that of Chordia et al.

(2019), except that we use the absolute value of SSD to measure the degree of the limits-

of-arbitrage. In our analysis, we find that O-RNS does not predict stock returns in the

bin with the smallest frictions. Our results are based on the use of a theoretically-founded

measure of the aggregate effect of the limits-of-arbitrage, whose correlation with specific

types of frictions is imperfect (HS).

Second, our results in Table 12, albeit supportive for the limits-of-arbitrage story,

do not preclude informed option trading, as an explanation of other empirical predictive

patterns. Nevertheless, the existence of market frictions is still a prerequisite to invoke

the informed option trading explanation. The theoretical model of Easley et al. (1998)

predicts that informed traders trade in the option market, only when there are sufficiently

relatively bigger frictions in the stock market. In our case, the non-zero SSD, which gives

rise to the predictive power of O-RNS, indicates that market frictions exist, even in the

presence of informed option traders. This is because we calculate SSD based on the scaled

deviations from put-call parity. In the absence of market frictions, SSD would become

zero because arbitrageurs would exploit deviations from put-call parity instantaneously.

5.5 Predictive power of implied volatility slope

In Section 3.4, we showed that the XZZ BS-IV slope measure, XZZo, may not accurately

proxy RNS, in the case where MR is violated. In this case, we showed that the robust

IV-based XZZ measure, XZZr, should be used, instead. In this subsection, we further

document that the predictive power of the XZZ measure vanishes, once we calculate it

based on the robust IVs. This is not surprising; the XZZ measure calculated with the
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robust IV curve is the counterpart of G-RNS. Both the robust IV and G-RNS take the

possible violation of MR in the underlying asset into account.

Table 13, Panel A, reports the summary statistics of SSD, XZZo, XZZr, estimated

at the end of each month, and their difference ∆XZZ = XZZo − XZZr. We can see

that SSD and the XZZ measures are calculated for about 2,200 stocks on average. The

mean and median of the two XZZ measures are both positive, implying that the IV curve

exhibits a negative skew more often than a positive skew, regardless of using the BS IV,

or the robust IVs. Table 13, Panel B, reports the pairwise Pearson and Spearman rank

correlations. The correlation between the original and robust XZZ measures is fairly high

(0.8). SSD and the original XZZ measure are negatively correlated, whereas SSD and the

robust XZZ measure do not show strong correlation. These patterns are in line with our

discussion in Section 3.4; the original XZZ measure is mechanically negatively correlated

with IVS and SSD (equations (31) and (32)), whereas the robust XZZ measure is not

affected by IVS because the robust IVS is zero.

[Table 13 about here.]

Next, we sort stocks in ascending order, based on XZZo and XZZr, separately,

and we form value-weighted decile portfolios. Then, we construct the long-short spread

portfolios, where we go long in the stocks with the highest XZZ measures, and short in

the stocks with the lowest measures. Table 14 reports the result. First, consistent with

Xing et al. (2010), the original XZZ measure negatively predicts future stock returns;

the decile portfolio returns are generally decreasing in the level of the XZZ measure.

The average return and alphas of the long-short spread portfolio are highly significant;

t-statistics are above 5.35 (3.71) in magnitude for the equally-weighted portfolio (value-

weighted portfolio). On the other hand, XZZr does not predict stock returns. The

average returns and alphas are all insignificant at a 5%-significance level for the value-

weighted portfolio, and mostly insignificant for the equally-weighted portfolio.

[Table 14 about here.]

We repeat the SSD-adjusted regression considered in Section 5.3 (Table 11) for the

XZZ-sorted portfolios, to examine whether the predictive power of XZZo stems from

that of SSD. The dependent variables in these regressions are the SSD-adjusted returns
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of the XZZo-sorted value-weighted decile portfolios, and that of their long-short spread

portfolio. Table 15 reports the result. We can see that the average portfolio SSD of

decile portfolios are monotonically decreasing in the level of the XZZo, in line with its

mechanical relation to SSD, equation (31). The alpha (intercept) of the SSD-adjusted

excess returns are overall insignificant. This is in contrast to the non-SSD adjusted case

(Table 14, Panel B), where alphas were significant. Similar to the O-RNS case, the switch

from the significant alphas to insignificant alphas, implies that the predictive power of

the XZZo is driven by the SSD component.

[Table 15 about here.]

In sum, even though the standard and robust XZZ measures are highly correlated,

there is an economically significant difference in the their predictive power. The original

XZZ measure of RNS loses its ability to predict stock returns, once we account for the

possible violation of MR in the estimation of IVs. This is analogous to our findings that

G-RNS does not predict stock returns, and showcases the need to also use the robust

IVs, in the case where MR is violated.

6 Conclusions

Risk-neutral moments (RNMs) is the building block in the vast literature which explores

the informational content of market option prices. This literature estimates RNMs by

assuming that market frictions in the underlying asset do not exist. We revisit the

estimation of RNMs, and we provide novel formulae to estimate them, in the presence of

market frictions. Our RNM formulae generalize the seminal Bakshi et al. (2003) (BKM)

formulae.

We relate the estimation of RNMs to market frictions by relying on the concept of the

martingale restriction (MR). The violation of MR, that is, the deviation of the expected

risk-neutral return from the risk-free rate, implies the presence of market frictions. Our

formulae differ from BKM, in that the risk-neutral expected return is modified. Under

the violation of MR, the risk-neutral expected asset returns deviate from the risk-free

rate, and our generalized formulae take into account such a return wedge. Moreover, to

increase the accuracy in the estimated RNMs, we propose the concept of robust implied
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volatility (IV), which preserves desirable properties (e.g., returning flat IV curves when

the distribution follows log-normal) even when MR is violated.

By employing the Spot Synthetic Difference (SSD) measure of Hiraki and Skiadopou-

los (2023) (HS) as a proxy of the return wedge, we find that both the S&P 500, and the

U.S. individual equities, frequently violate MR. This finding motivates us to investigate

the effect of market frictions to the estimated RNMs. Our empirical analysis shows that

the difference between the risk-neutral skewnesss (RNS) calculated by the original BKM

formula (O-RNS), and that calculated by our generalized BKM formula (G-RNS) is eco-

nomically significant. O-RNS predicts the cross-section of future stock returns in line

with the previous literature, whereas G-RNS does not; this discrepancy becomes more

apparent when robust IVs are used to estimate either G-RNS, or a proxy of RNS. We

document that the predictive power of O-RNS stems from its estimation bias, caused

by the violation of MR, and it is stronger when calculated from stocks which underlie

options with lower rather than bigger option trading volume. Interestingly, our approach

to estimate RNMs under frictions, allows us to contribute to the ongoing debate on the

mechanism of the predictive power of O-RNS. Our results strongly suggest that the pre-

dictive power of O-RNS stems from the existence of limits-to-arbitrage due to market

frictions.

Our study has revealed that the estimation bias in RNMs can be economically signif-

icant in the context of RNS. However, our theoretical results are relevant to any studies

on the information content of option prices, which rely on the validity of MR, including

the estimation of risk-neutral distributions, empirical pricing kernels, risk-aversion pa-

rameters, and portfolio allocation, among others. These topics are best left for future

research.

A Proofs

A.1 Proof of Proposition 3.1

Carr and Madan (2001) show that any twice differentiable payoff function f(ST ) satisfies

f(ST ) = f(F ) + f ′(F )(ST − F ) +

∫ ∞

F

f ′′(K)(ST −K)+dK +

∫ F

0

f ′′(K)(K − ST )
+dK,

(A.1)
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for an arbitrary positive number F . The power-n log return contract functions satisfy

f(St − D̃t,T ) = f ′(St − D̃t,T ) = 0. Hence,

f(ST ) =

∫ ∞

St−D̃t,T

f ′′(K)(ST −K)+dK +

∫ St−D̃t,T

0

f ′′(K)(K − ST )
+dK. (A.2)

We multiply both sides by e−rf τ , and take the risk-neutral expectation. Under the as-

sumption that option prices satisfy MR, we obtain:

e−rf τEQ
t [f(ST )] =

∫ ∞

St−D̃t,T

f ′′(K)Ct(K,T )dK +

∫ St−D̃t,T

0

f ′′(K)Pt(K,T )dK. (A.3)

Taking the second derivatives for f(ST ) = log(ST + D̃t,T/St)
n, we obtain equations (12)

and (13).

Next, note that erf τ + ωt,T = EQ
t [Rt,T ] = EQ

t [e
rt,T ] holds. Therefore, expanding the

last expression as a forth-order Taylor series approximation, yields

erf τ +ωt,T = 1+EQ
t [rt,T ] +

1

2
EQ

t [(rt,T )
2] +

1

6
EQ

t [(rt,T )
3] +

1

24
EQ

t [(rt,T )
4] + o((rt,T )

4). (A.4)

In line with BKM, we rearrange, and ignore the higher-order residual term to obtain

µ̃t,T := EQ
t [rt,T ] = erf τ + ωt,T − 1− erf τ

2
M(2)t,T − erf τ

6
M(3)t,T − erf τ

24
M(4)t,T . (A.5)

This proves equation (11). Then, equations (8) to (10) follow. 2

A.2 Proof of Proposition 3.2

Since the payoff functions change to f(ST ) = log(ST/St)
n for the ex-dividend case, we

now have f(St) = f ′(St) = 0. Therefore, the boundary value for the two integrals in

equations (A.2) and (A.3) changes from St − D̃t,T to St. Moreover, we obtain (14) and

(15), by calculating the second derivative of the ex-dividend power-n log return functions.

Next, note that the following relation holds:

EQ
t [exp(r

ex
t,T )] = EQ

t

[
ST

St

]
= EQ

t [Rt,T ]−
D̃t,T

St

= erf τ + ωt,T − D̃t,T

St

. (A.6)

Expanding the left hand side of equation (A.6) by a Taylor series approximation similar

to equation (A.4), and rearranging, yields equation (16). 2
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A.3 Proof of Proposition 3.3

First, we prove (a) for the call option case. Let c(St, K, τ, rf , D̃t,T , σ, rS) be the call pricing

function, equation (20), under the distribution (17). Our purpose is to find the expression

of IV c(K; rS), which solves c(St, K, τ, rf , D̃t,T , σ, rS) = BScall(St, K, τ, rf , D̃t,T , IV
c(K; rS)).

In what follows, we suppress all arguments of the c function and IV c, but rS.

The first-order Taylor series approximation of the (standard) BS call function with

respect to the volatility parameter around the true volatility parameter σ, yields

BScall(St, K, τ, rf , D̃t,T , IV
c(rS)) ≈ BScall(St, K, τ, rf , D̃t,T , σ)+VBS(IV

c(rS)−σ), (A.7)

where VBS is the BS vega evaluated at (St, K, τ, rf , D̃t,T , σ). On the other hand, the

first-order Taylor series approximation of the c function with respect to the rS-argument

around rS = rf yields

c(rS) ≈ c(rf ) +
∂c

∂rS

∣∣∣
rS=rf

(rS − rf ). (A.8)

The left-hand side of equations (A.7) and (A.8) are the same by the definition of the IV,

c(rS) = Ct(K,T ) = BScall(St, K, τ, rf , D̃t,T , IV
c(rS)). Moreover, the first terms in the

right-hand side of equations (A.7) and (A.8) are also the same; c(rf ) = BScall(St, K, τ, rf , D̃t,T , σ)

follows from equation (20). Therefore, equations (A.7) and (A.8) yield

IV c(rs) ≈ σ +
rS − rf
VBS

∂c

∂rS

∣∣∣
rS=rf

. (A.9)

Calculation of the partial derivative ∂c/∂rs yields

∂c

∂rS
= e(rS−rf )τ

(
τBScall(St, K, τ, rS, D̃t,T , σ) +

∂BScall(St, K, τ, r, D̃t,T , σ)

∂r

∣∣∣
r=rS

)
= e(rS−rf )ττStΦ(d1),

(A.10)

because the rho of the BS function with discrete dividends evaluated at r = rS is given

by τ(StΦ(d1)−BScall(St, K, τ, rS, D̃t,T , σ)). Therefore, equation (A.9) reduces to

IV c(rS) ≈ σ + (rS − rf )τ
StΦ(d1)

VBS

= σ + (rS − rf )τ
St

St − e−rf τD̃t,T

Φ(d1)√
τϕ(d1)

, (A.11)

because the BS vega is given by VBS =
(
St − e−rf τD̃t,T

)
ϕ(d1)

√
τ . Since ωt,T/R

f
t,T =

EQ
t [Rt,T ]/R

f
t,T − 1 = e(rS−rf )τ − 1 ≈ (rS − rf )τ holds, equation (25) follows. A similar
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calculation for the put option, proves equation (26).

Next, we prove (b). The statement about the inequality relation between σ and IV c

or IV p is obvious because Φ(x)/ϕ(x) is always positive. To prove the remaining claim, it

suffices to show Φ(x)/ϕ(x) is increasing in x. Since the derivative (Φ(x)/ϕ(x))′ is given

by
ϕ2(x)− Φ(x)ϕ′(x)

ϕ2(x)
=

ϕ2(x) + xΦ(x)ϕ(x)

ϕ2(x)
=

ϕ(x) + xΦ(x)

ϕ(x)
, (A.12)

it suffices to show ϕ(x) + xΦ(x) > 0, for any x. This is obvious for x ≥ 0. For x < 0,

we prove that x > −ϕ(x)/Φ(x). In this case, ϕ(x)/Φ(x) (the inverse Mills ratio of the

standard normal distribution) is known to be equal to the negative of the truncated mean

−E[Z|Z < x], where Z is a standard normal random variable (see e.g., Theorem 22.2 of

Greene, 2003). Then, x > E[Z|Z < x] follows. 2

A.4 Proof of Proposition 3.4

The observed put and call prices satisfy the following relation.

e−(rS−rf )τCt(K,T )− e−(rS−rf )τPt(K,T ) = e−(rS−rf )τe−rf τEQ
t [ST −K]

= e−rSτEQ
t [ST −K] = e−rSτStEQ

t [Rt,T ]− e−rSτD̃t,T − e−rSτK

= (St − e−rSτD̃t,T )− e−rSτK.

(A.13)

Therefore, it follows that IV c
rob = IV p

rob = IVrob if and only if

BScall(St, K, τ, rS, D̃t,T , IVrob)−BSput(St, K, τ, rS, D̃t,T , IVrob) = (St−e−rSτD̃t,T )−e−rSτK.

(A.14)

Equation (A.14) holds because of the property of the BS formulae with deterministic

dividends. 2

A.5 Proof of Lemma 3.1

For simplicity, we assume that the stock pays no dividends. The weighting function

η(K;St, n) in equation (12) equals

η(K;St, n) =
n(log (K/St))

n−2

K2
[(n− 1)− log(K/St)] . (A.15)
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For strikes K/St > en−1, equation (A.15) is negative regardless of whether n is odd, or

even. This proves the respective last inequalities in equations (29), and (30).

For strikes K/St < en−1, the square bracket term in equation (A.15) is positive.

Therefore, the sign of the η function equals the sign of (log(K/St))
n−2. This term is

always non-negative, when n is an even number, proving equation (30). On the other

hand, when n is an odd number, this term is non-negative for K/St ≥ 1, and negative

for K/St < 1. This proves equation (29). 2

B On the implied stock price approach

B.1 Theoretical considerations

Longstaff (1995) studies first whether a stock price satisfies MR empirically by testing

whether equation (2) holds. To this end, he assumes that the unobservable right-hand

side of equation (2) can be estimated by the implied stock price S∗
t extracted from the

observed market option prices, that is, he assumes that

S∗
t =

1

Rf
t,T

EQ
t [ST + D̃t,T ]. (B.16)

Under this assumption, Longstaff (1995), and subsequent studies, typically test MR by

investigating whether the relative difference between the implied stock price and the

observed stock price, ∆t, is different from zero:

∆t =
S∗
t − St

St

. (B.17)

To extract the implied stock price, first, an option pricing model h(ξ, St, K, τ, rf , D̃t,T ),

where ξ denotes the set of parameter(s), is selected. A typical choice in the literature is

the Black and Scholes (1973) (BS) model, where ξ consists of one parameter, the volatility.

Then, S∗
t is calculated, jointly with the model parameters in ξ, by minimizing the sum

of squared errors between the observed option prices Ot(K,T ), and model-based option

prices h(ξ, S∗
t , K, τ, rf , D̃t,T ):

min
ξ,S∗

t

∑[
Ot(K,T )− h(ξ, S∗

t , K, τ, rf , D̃t,T )
]2

. (B.18)

We explain the relation between the implied stock price and the wedge term ωt,T in
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equation (7). Adding and subtracting EQ
t [ST + D̃t,T ]/R

f
t,T to the numerator of equation

(B.17), and using equation (7) yield

∆t =
S∗
t − EQ∗

t [ST + D̃t,T ]/R
f
t,T

St

+
ωt,T

Rf
t,T

. (B.19)

Therefore, if the assumption made by Longstaff (1995), equation (B.16) holds, then ∆t

and the wedge ωt,T are proportionally related as follows

∆t =
ωt,T

Rf
t,T

. (B.20)

Therefore, for the Longstaff (1995) approach to be a valid way to test MR, the validity

of his assumption, equation (B.16), is crucial. Unfortunately, this assumption does not

hold in general. To see this point, we consider the most frequently considered situation

in the literature, where the option pricing model is set to the BS model. The following

Proposition shows the conditions under which the implied stock price approach, based

on the BS option pricing model, constitutes a valid test of MR.

Proposition B.1. Assume that options satisfy MR, yet the underlying stock may violate

MR. Assume further that (i) the true Q-distribution of ST is log-normal, and (ii) there

are at least two observed option prices as an input to the minimization problem described

in equation (B.18). Then,

∆BS
t :=

S∗
t,BS − St

St

=
ωt,T

Rf
t,T

, (B.21)

where S∗
t,BS is given as the solution of equation (B.18), in the case where the option

pricing model used to extract the implied stock price is the BS model.

Proof. Let m and σ be the mean and the volatility parameters of the true log-normal

distribution, respectively, that is, ST ∼ Lognormal(m,σ2τ). The BS benchmark model

assumption suggests that the benchmark model-based distribution of ST is given by

Lognormal

(
log(S∗

t − e−rf τD̃t,T ) + rfτ − (σ∗)2τ

2
, (σ∗)2τ

)
. (B.22)

When there are two or more observed option prices in the minimization problem, equation

(B.18), the two parameters of the true distribution, m and σ, can be correctly identified

and satisfy σ = σ∗ and

m = log(S∗
t − e−rf τD̃t,T ) + rfτ − (σ∗)2τ

2
. (B.23)
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In this case, the expected stock price under the true risk-neutral probability measure

is calculated as

EQ
t [ST ] = exp

(
m+

σ2τ

2

)
= erf τS∗

t − D̃t,T , (B.24)

due to equation (B.23). Equation (B.24) yields S∗
t = e−rf τEQ

t [ST +D̃t,T ]. Hence, equation

(B.16) holds. This proves equation (B.21). 2

Proposition B.1 shows that the implied stock price approach constitutes a valid test

of MR (i.e., MR holds, if and only if ∆BS
t = 0), if the true Q-distribution follows a

log-normal distribution, and the BS model is used to extract the implied stock price. On

the other hand, we show by means of simulation later in this appendix section that the

BS model-based implied stock price approach spuriously rejects MR even if MR holds, if

the true Q-distribution of the future stock price is not log-normal.

B.2 Implied stock approach: Simulation

We explore the ability of the implied stock approach to test MR, under a simulation

setting, where MR holds. The simulation setup is as follows. We choose St = 100,

τ = 1/6 and rf = 4%. For dividends, we set D̃t,T = 0.5, which corresponds to about

3% annualized dividend yield. Call and put options trade at strikes K = 80, 85, . . . , 120

(i.e., nine strikes). We assume that both the underlying stock and options satisfy MR

under the true Q measure and thus option prices are given by the risk-neutral valuation

formulae

Ct(K,T ) = e−rf τEQ
t [(ST −K)+], and Pt(K,T ) = e−rf τEQ

t [(K − ST )
+], (B.25)

where (x)+ = max(x, 0). We assume that the Q-distribution of the stock price may not

be log-normal. Hence, the BS implied volatility (BS-IV) curve may be skewed, that is,

the graph of the BS-IV as a function of the option moneyness may not be flat. We model

the BS-IV curve as a linear function of moneyness IV (K/St) = σATM +k(K/St− 1). We

set the at-the-money (ATM) volatility, σATM to 20%. The coefficient k controls the slope

of the IV skew. We examine five realistic values for the slope coefficient k: k = ±1/2,

k = ±1/4, and k = 0. For example, k = −1/2 corresponds to the situation where

the BS-IV=30% at K = 80 (i.e., moneyness = 0.8), and BS-IV=10% at K = 120 (i.e.,

moneyness = 1.2). Then, we convert the BS-IV at each traded strike to the respective call
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and put option prices, using the BS option pricing functions with deterministic dividend

payments, that is,

Ct(K,T ) = BScall(St, K, τ, rf , D̃t,T , IV ) = (St− e−rf τD̃t,T )Φ(d1)− e−rf τKΦ(d2), (B.26)

where Φ is the cumulative density function of the standard normal distribution, and

d1 =
log
(

St−e
−rf τ

D̃t,T

K

)
+ (rf +

1
2
IV 2)τ

IV
√
τ

, and d2 = d1 − IV
√
τ . (B.27)

The put option price is given by

Pt(K,T ) = BSput(St, K, τ, rf , D̃t,T , IV ) = e−rf τKΦ(−d2)− (St − e−rf τD̃t,T )Φ(−d1).

(B.28)

This construction ensures that the underlying satisfies MR, too. To show this, Ct(K)−

Pt(K) = St−e−rf τD̃t,T −e−rf τK follows from the definition of BS-IV via the BS functions

(equations (B.26), and (B.28)). Ct(K)−Pt(K) = e−rf τEQ∗

t [ST −K] follows from equation

(B.25). These two equations yield St = e−rf τEQ
t [ST + D̃t,T ].

21 Note that to ensure that

the underlying satisfies MR, it is crucial to convert the same BS-IV to obtain the call

and put option prices; in Section 3.4, we show that the violation of MR is equivalent to

the non-zero implied volatility spread (i.e., the difference between the call BS-IV and put

BS-IV extracted from call and put options with the same strike). Given these generated

option prices, we obtain the two parameters, the implied stock price S∗
t and the BS

volatility parameter σ∗, by solving equation (B.18).

Table 16 reports the simulation result. In line with the literature on testing MR, we

estimate S∗
t and σ∗ using a set of call options and a set of put options, separately. We

also report the estimate of the (annualized) return wedge as ω̂t,T = Rf
t,T ∆̂t/τ , under the

implied stock price approach (equation (B.20)). The implied stock price approach is an

alternative way to estimate the underlying stock return wedge, only once its key assump-

tion, equation (B.16), is imposed. We can see that the two parameters, S∗
t and σ∗, are

correctly estimated under k = 0. In this case, the implied stock price approach identifies

correctly that MR holds. This is in line with Proposition B.1 because k = 0 corresponds

to a situation, where the true Q-distribution follows a log-normal distribution. On the

21Note that we make no assumption that the BS model is the true model; we simply use it as a
translation mechanism to map IVs to option prices. In fact, the designed simulation admits that the BS
model is not the true model, unless k = 0.
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contrary, when k is negative (positive), S∗
t is estimated to be lower (higher) than St,

regardless of whether one uses call or put options. Therefore, even though we assume

that the underlying satisfies MR, the implied stock price approach spuriously rejects MR,

when the slope of the IV curve is non-zero.

[Table 16 about here.]

We explain the mechanism which yields S∗
t > St, in the case where k < 0 (i.e.,

negative IV skew case). The implied stock price S∗
t is chosen so that the BS-IVs of the

model-based option prices h(ξ, S∗
t , K, τ, rf , D̃t,T ) fit the negatively skewed BS-IVs of the

observed option prices, as close as possible. For a set of call options, for this to occur,

in-the-money (ITM) calls should be more “expensive” (in terms of the BS-IV) compared

to out-of-the-money (OTM) calls. To achieve this, the implied stock price approach sets

S∗
t higher than St. This is equivalent to setting a positive ω̂t,T (equation (B.20)), that

is, setting the estimate of the expected stock return under Q greater than the risk-free

rate (equation (7)). Therefore, choosing S∗
t > St makes call options more expensive by

setting the expected stock return higher. In addition, this effect is stronger for ITM call

options than OTM call options. This is because one can benefit from a higher expected

stock price only in the case where call options expire in-the-money; this is more likely for

ITM options than OTM options. Figure 5a shows the effect of choosing a higher value

for S∗
t . The BS model-based IV with a higher S∗

t locates closer to the true simulated IV

curve, compared to the “initial” BS model-based IV curve, where the parameters are set

to S∗
t = St and σ∗ = σATM (the gray thin line). Finally, σ∗ is estimated lower than the

average IV level (i.e., σATM), to offset increases in call option prices due to a higher S∗
t ,

which would prevent fitting the level of the given IV curve. Figure 5b shows the effect of

choosing a lower value for σ∗; the BS model-based IV curve with lower σ∗ locates closer to

the true simulated IV line, compared to the BS model-based IV curve with σ∗ = σATM .

For the case of put options, a negative IV skew means that OTM puts are more

“expensive” (in terms of the IV) compared to OTM puts. To create such a pattern,

again a higher S∗
t is chosen by the minimisation algorithm. This is because choosing

S∗
t > St makes put options cheaper. This effect is stronger for ITM put options than

OTM ones (Figure 5c) for an analogous reason to the call case. Finally, σ∗ is estimated

higher than σATM to offset decreases in put option prices due to a higher S∗
t which again

would prevent fitting the level of the IV curve (Figure 5d).
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[Figure 5 about here.]

Three remarks are in order regarding the results of our simulation. First, the results

are in line with the empirical results reported in the literature; Longstaff (1995), and the

follow-up studies, report that the estimated stock price is greater than the current stock

price (i.e., S∗
t > St), in more than 90% of the cases in their samples. Even though the

previous literature views this as evidence for the violation of MR, our simulation results

suggest that the reported violation of MR, under the implied stock approach, may be a

reflection of the negative IV skew, typically encountered in index options.

Second, our simulated results show that the implied stock approach rejects MR spuri-

ously, in the case where the BS model is chosen to calculate the implied stock price, and

an IV skew exists. In other words, even if ωt,T equals zero, ∆BS
t may not equal zero. This

implies that the key assumption of the implied stock price approach, equation (B.16),

may not supported by the data. In addition, the spurious rejection of MR under the

implied stock price approach may also be a result of the selected (possibly mis-specified)

option pricing model. This manifests that the implied stock price approach is subject to

testing a joint hypothesis: it tests a property of the true risk-neutral distribution (i.e.,

MR) by assuming a specific model for the risk-neutral distribution.

Finally, that the Longstaff (1995) approach does not constitute a valid MR test does

not mean MR holds in general. On the contrary, testing MR under the SSD-approach

circumvents the joint hypothesis problem, as well as the strong assumption shown by

equation (B.16).

C Description of dataset and variables

In this Appendix, we provide a detailed explanation for the data sources and the calcu-

lation procedures for the characteristic variables, SSD, and RNMs. We also explain how

we link the three databases we use: OM, CRSP and Compustat.

C.1 Firms’ and stocks’ characteristic variables

Beta: In each month, we regress daily stock excess returns over past 12 months on the

daily excess market return, to estimate the beta. We require there are at least 200
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non-missing observations. We obtain stock return data from the CRSP database.

We use the excess market return, provided at Kenneth French’s website.

SIZE: Size is the natural logarithm of the market equity. The market equity is calculated

as the product of the number of outstanding share with the price of the stock at

the end of each month. We obtain data from the CRSP database.

Book-to-Market equity (B/M): We follow Davis et al. (2000) to measure book equity

as stockholders’ book equity, plus balance sheet deferred taxes and investment tax

credit (Compustat annual item TXDITC) if available, minus the book value of

preferred stock. Stockholders’ equity is the value reported by Compustat (item

SEQ), if it is available. If not, we measure stockholders’ equity as the book value of

common equity (item CEQ) plus the par value of preferred stock (item PSTK), or

the book value of assets (item AT) minus total liabilities (item LT). Depending on

availability, we use redemption (item PSTKRV), liquidating (item PSTKL), or par

value (item PSTK) for the book value of preferred stock. From June of each year t

to May of t + 1, we caculate the book-to-market equity (B/M) as the ratio of the

book equity for the fiscal year ending in calendar year t − 1 to the market equity

at the end of December of year t− 1. We treat non-positive B/M data as missing.

Profitability: We follow Fama and French (2015) to measure profitability as revenues

(Compustat annual item REVT) minus cost of goods sold (item COGS) if available,

minus selling, general, and administrative expenses (item XSGA) if available, minus

interest expense (item XINT) if available, divided by (non-lagged) book equity.

From June of year t to May of t+1, we assign profitability for the fiscal year ending

in calendar year t− 1.

Investment: We follow Fama and French (2015) to measure investment as the change

in total assets (Compustat annual item AT) from the fiscal year ending in year t−1

to the fiscal year ending in t, divided by t− 1 total assets. From June of year t to

May of t+1, we assign investment for the fiscal year ending in calendar year t− 1.
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C.2 Linking OM, CRSP, and Compustat databases

In our analysis, we use three databases, OM, CRSP, and Compustat. To link CRSP and

Compustat, we use the SAS linking macro provided by the Wharton Research Data Ser-

vices (WRDS), and match PERMNO (the CRSP identifier) and GVKEY (the Compustat

identifier). To link CRSP and OM, we link SECID (the OM identifier) and PERMNO

by the SAS linking macro provided by the WRDS. This WRDS macro links SECID

and PERMNO based on the CUSIP code, the similarity in the issuer’s (company) name

recorded in OM and CRSP, and partly the security ticker. The macro also provides the

score of the strength of the link based on a 0–7 integer scale (0 stands for the strongest

link, where the eight-digit CUSIP exactly matches as well as the issuer’s name matches).

We keep SECID-PERMNO link with the score less than or equal to three. After linking

SECID, GVKEY and PERMNO, we keep only U.S. common stocks (SHRCD 10 or 11)

traded in NYSE/Amex/NASDAQ (EXCHCD 1, 2, or 3).

C.3 Estimation of SSD

HS show that the underlying stocks’ SSD satisfies the following approximate relation:

SSDt,T ≈
R0

t,T

St

(S̃t,T (K)− St), (C.29)

where S̃t,T (K) is the synthetic stock price defined as

S̃t,T (K) = Ct(K,T )− Pt(K,T ) +
K + D̃t,T

Rf
t,T

. (C.30)

Their result, equation (C.29), shows that SSD is accurately proxied by the observable

scaled deviations from put-call parity.

To estimate SSD, we use an alternative equivalent expression of S̃t,T −St in the right-

hand side of equation (C.29).

S̃t,T (K)−St = BScall(St, K, τ, r, D̃t,T , IV
c
t (K))−BScall(St, K, τ, r, D̃t,T , IV

p
t (K)), (C.31)

where BScall is the Black-Scholes European call option function with deterministic divi-

dend payment (equation (B.26)), and IV c
t (K) (IV p

t (K)) is the IV of the call (put) option.

We estimate the right-hand side of equation (C.29) by calculating deviations from put-call

parity based on equation (C.31).
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To this end, we use the 30-day forward ATM call and put IVs provided by the OM

SO file, that is, K = Ft,T = erf τSt − D̃t,T and τ = 30 days. We obtain the underlying

stock price St and the risk-free rate rf from the OM database. We interpolate the OM

zero yield data to obtain the risk-free rate, for the specified day-to-maturity. Regarding

the dividend payment D̃t,T , we back it out from the forward price in the OM SO file as

D̃t,T = erf τSt − Ft,T .

C.4 Estimation of risk-neutral moments

We estimate risk-neutral moments (RNMs) based on the formulae shown in Section 3. We

obtain the option price data across a wide range of strike from the OM VS file. The OM

VS file contains the smoothed IVs for standardized maturities and deltas. It contains IVs

and associated option prices and strike prices, at delta equals 0.2, 0.25, . . . , 0.8, for call

options, and -0.8, -0.75, . . . , -0.2 for put options, for 30, 60, 91, 122, 152, 182, 273, 365,

547 and 730 calendar days-to-maturity. We use the 30-day-to-maturity data to estimate

RNMs. Therefore, this file allows us to use call and put option data for 13 different

strikes, for standardized time-to-maturities. The OM volatility surface file provides IVs,

implied strike prices, and implied European option prices at each standardized delta for

call and put options, separately. We discard day-stock observations, and hence do not

estimate the RNMs, when the strike prices provided by the OM of calls or puts are not

monotonic in deltas. Such a situation may occur when the interpolated volatility surface

exhibits an extremely steep skew.

We follow Stilger et al. (2017), to interpolate and extrapolate IVs as follows. We

interpolate call IVs and put IVs, separately, in the strike-IV dimension, using a cubic

piecewise Hermite polynomial interpolation scheme. Then, we extrapolate horizontally

the IV beyond the highest and the lowest strikes. To estimate O-RNMs, we interpolate

the IVs provided by OM. To estimate G-RNMs, first we calculate the robust IVs from the

implied option prices provided by OM. Then, we interpolate these robust IVs. Once we

obtain the continuous IV curve, we calculate option prices at 1001 equally-spaced strike

points over the moneyness from 1/3 to 3. Finally, we estimate O-RNMs and G-RNMs

by numerically calculating the the integrals showing in the original BKM formulae, and

Proposition 3.1, respectively.

The usage of the OM VS file facilitates our empirical analysis in two ways. First, it
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provides the IVs at a standardized maturity, and for a unified strike range (0.2 to 0.8

deltas in the absolute value) across stocks. This helps us to avoid any issues arising from

employing RNMs estimated from different maturities, and different moneyness ranges

covered by traded options. Second, this dataset has been used in the estimation of

RNMs (e.g., Borochin and Zhao, 2018; Chordia et al., 2019), thus making possible the

comparison of our results to theirs.
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Figure 1. Implied volatility and the violation of MR

This Figure depicts the call and put BS-IV curves as a function of option’s moneyness
(strike to stock price ratio) based on equations (25) and (26), respectively. The time-to-
maturity is τ = 1/8, the risk-free rate is rf = 3%, the volatility parameter is σ = 20%,

the deterministic dividend-to-stock price is D̃t,T/St = 0.5% and the annualized SSD is
SSDt,T/τ = 1%. The x-axis is the moneyness, and the y-axis is the implied volatility in
percentage.
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Figure 2. Horizontally extrapolated standard IVs in the RNM estimation

This Figure depicts the simulated call and put Black and Scholes (1973) implied volatil-
ity (BS-IV) curves, extracted from option prices across a continuum of strikes (dotted
lines; considered to be the true unobserved IVs). It also shows the interpolated and ex-
trapolated BS-IV curves, extracted from simulated option prices observed across discrete
strikes (solid lines; considered to be the empirically observed IVs). We use Proposi-
tion 3.3 to simulate the call and put BS-IV curves, using the following parameters: the
current underlying price is St = 100, the time-to-maturity is τ = 1/12, the risk-free
rate is rf = 3%, the volatility parameter is σ = 30%, and the expected stock return is
rS = rf+3%. For simplicity, we assume that the stock pays no dividends. The empirically
observed BS-IVs are given by interpolating/extrapolating them across discrete money-
ness K/S levels. We assume that options trade at K = 94, 95, . . . , 108 (i.e., moneyness
equals 0.94, 0.95, . . . , 1.08). We interpolate out-of-the-money call and put option BS-IVs,
separately, by the cubic Hermite polynomial interpolation, and extrapolate horizontally,
beyond the observed moneyness range. The level of moneyness, and the implied volatility
(in percent) are shown on the x- and y-axis, respectively.

59



-40%

-30%

-20%

-10%

0%

10%

20%

30%

Jan-96 Jan-99 Jan-02 Jan-05 Jan-08 Jan-11 Jan-14 Jan-17

(a) Estimated daily 30-day SSD of S&P 500

0%

1%

2%

3%

4%

5%

6%

Jan-96 Jan-99 Jan-02 Jan-05 Jan-08 Jan-11 Jan-14 Jan-17

(b) Estimated daily 30-day SSD of S&P 500 (21-day moving average of the absolute value)

Figure 3. Estimated daily 30-day SSD of the S&P 500

Figure (a) depicts the daily 30-day SSD of the S&P 500 index estimated from the 30-day
forward at-the-money call and put option prices recorded in the OptionMetrics Stan-
dardized Options file. Figure (b) depicts the 21-day moving average of the absolute value
of the daily estimated 30-day SSD. The estimation period spans from the beginning of
January 1996 to the end of December 2017. The unit of y-axis in the both Figures is the
percentage value of SSD per year.
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(a) Equally-weighted portfolios
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(b) Value-weighted portfolios

Figure 4. The t-statistics of the average returns and alphas of the RNS-sorted
long-short spread portfolios based on the four alternative RNS estimation
specifications

The x-axis stands for the estimation specification of the RNS. The first letter of the
prefix denotes the formula used to estimate the RNS (either Original or Generalized).
The second letter of the prefix denotes the IVs used for the inter-/extrapolation (either
Standard IV or Robust IV). The y-axis stands for the value of the t-statistics.
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Figure 5. Implied stock price approach: Schematic graphs when the true
BS-IV curve is negatively skewed

These four Figures illustrate how the BS model-based implied stock price approach
chooses the implied stock price S∗

t and the BS volatility parameter σ∗. The black thick
line in each Figure depicts the true simulated BS-IV curve as a function of moneyness
IV (K/St) = σATM − (K/St − 1)/4. The BS model-based implied stock price approach
chooses S∗

t and σ∗, so that the BS-IV curve of the BS model-based option prices is the
closest to the true simulated BS-IV curve. Figures (a) and (c) depict the effect of choos-
ing a higher value for S∗

t (from the gray thin line to the blue dotted line), for the call
option and put option cases, respectively. Figures (b) and (d) depict the effect of choosing
a lower (higher) value of σ∗ (from the blue dotted line to the red dashed line) for the
call (put) option case, respectively. The x-axis is moneyness and the y-axis is the IV in
percent.
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Table 1. Effect of market frictions to RNMs: Simulation results

Entries report RNMs, based on simulated data, under four alternative estimation specifications. We

generate simulated option prices, assuming that the stock price follows a log-normal distribution, equation

(17). We set St = 100, rf = 3%, τ = 1/12, and σ = 30%. We consider three cases of the risk-neutral

expected stock return rS : rS = rf (zero SSD case), rS = rf +3% (positive SSD case), and rS = rf − 3%

(negative SSD case). Under this setup, the true MFIV, RNS, and RNK are 30%, zero, and three,

respectively, regardless of the value of rS . The first column specifies the RNM estimation specifications.

The first letter denotes the type of the formula (“Original” BKM formula, or the “Generalized” BKM

formula). The second letter denotes the type of the interpolated-extrapolated IVs (“Standard” IVs, or

the “Robust” IVs.)

Zero SSD Positive SSD Negative SSD
MFIV RNS RNK MFIV RNS RNK MFIV RNS RNK

OS 30.0% 0.00 3.00 30.0% 0.11 3.00 30.0% -0.11 3.00
OR 30.0% 0.00 3.00 30.0% 0.09 3.00 30.0% -0.09 3.00
GS 30.0% 0.00 3.00 30.0% 0.02 2.99 30.0% -0.02 3.01
GR 30.0% 0.00 3.00 30.0% 0.00 2.99 30.0% 0.00 3.00
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Table 2. Summary statistics of SSD, and significance of mean absolute SSD

Entries in Panels A and B report the summary statistics of the SSD, and its absolute value calculated

from daily and end-of-month SSD values, respectively. We calculate SSD for all available U.S. common

stocks traded at NYSE/Amex/NASDAQ, for each trading day. P5 and P95 denote the fifth and 95-th

percentiles of the pooled stock-day observations, respectively. The unit of SSD summary statistics is %

per year. Entries in Panel C report the number of individual stocks, whose time-series mean absolute SSD

is greater than zero, 1%, 2%, and 3%, respectively. A stock is included in this number, if the t-statistic

is greater than three, where the null hypothesis is that the mean absolute SSD of the stock equals the

given reference point. Entries in columns labeled “Daily” and ”End-of-month” are computed using daily

and monthly observations, respectively. We report the number and percentage, in squared brackets, of

stocks, whose mean absolute SSD exceeds a reference value; we consider three groups of stocks consisting

of at least 21 (12), 1200 (60), and 2500 (120) non-missing observations at a daily (monthly) frequency,

respectively. The first row reports the number of stocks within each one of the groups. The estimation

period spans January 1996 to December 2017.

Panel A: Summary statistics: Daily SSD
Obs Mean St. dev. P5 Median P95

SSD 12,469,967 -1.1 15.9 -17.0 -0.6 14.0
|SSD| 12,469,967 6.8 14.4 0.2 2.8 24.8

Panel B: Summary statistics: End-of-month SSD
Obs Mean St. dev. P5 Median P95

SSD 596,679 -0.9 16.2 -17.1 -0.4 14.4
|SSD| 596,679 7.0 14.7 0.2 2.8 25.2

Panel C: Number of stocks with significant mean absolute SSD
Daily End-of-month

Valid observations Valid observations
≥ 21 ≥ 1200 ≥ 2500 ≥ 12 ≥ 60 ≥ 120

Number of stocks 6791 3357 1836 6219 3277 1833
mean(|SSD|) > 0 6692 3337 1827 5748 3177 1797

[98.5] [99.4] [99.5] [92.4] [96.9] [98.0]
mean(|SSD|) > 1% 6631 3308 1807 5290 2986 1689

[97.6] [98.5] [98.4] [85.1] [91.1] [92.1]
mean(|SSD|) > 2% 5968 2809 1390 3989 2139 1075

[87.9] [83.7] [75.7] [64.1] [65.3] [58.6]
mean(|SSD|) > 3% 5139 2265 1019 2899 1470 668

[75.7] [67.5] [55.5] [46.6] [44.9] [36.4]
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Table 3. O-RNMs and G-RNMs: Summary Statistics

Entries in Panel A report the summary statistics of SSD, the three estimated risk-neutral moments (RNMs), model-free implied volatility (MFIV), risk-neutral

skewness (RNS), and risk-neutral kurtosis (RNK), computed by the original and our generalized BKM formulae (prefix “O” and ”G”, respectively), separately.

We also compute the difference between the estimated O-RNMs and the corresponding G-RNMs (with prefix “∆”). We estimate these option-implied measures

at the end of each month, from January 1996 to December 2017 (264 months). P5 and P95 denote the fifth and 95th percentile, respectively. The unit of SSD is

% per 30-days, and that of MFIV is % (per year). Entries in Panel B report the Pearson and Spearman pairwise correlations between SSD and RNMs, SSD and

∆RNM, and O-RNM and G-RNM.

SSD O-MFIV G-MFIV O-RNS G-RNS O-RNK G-RNK ∆MFIV ∆RNS ∆RNK
Panel A: Summary statistics

Mean -0.07 52.11 51.99 -0.20 -0.19 3.64 3.62 0.12 -0.01 0.02
St. dev. 1.33 26.99 26.68 0.51 0.48 1.16 1.16 1.52 0.23 0.39
P5 -1.40 21.54 21.60 -0.87 -0.80 2.88 2.88 -0.47 -0.30 -0.14
Median -0.03 45.74 45.71 -0.24 -0.21 3.28 3.26 -0.02 -0.01 0.01
P95 1.18 103.58 103.08 0.58 0.50 5.72 5.70 0.89 0.27 0.21
Obs 582,796 582,796 582,796 582,796 582,796 582,796 582,796 582,796 582,796 582,796

Panel B: Pairwise correlations
SSD and RNMs SSD and ∆RNM

O-MFIV G-MFIV O-RNS G-RNS O-RNK G-RNK ∆MFIV ∆RNS ∆RNK
Pearson -0.11 -0.07 0.36 -0.01 0.13 0.04 -0.72 0.82 0.29
Spearman -0.08 -0.07 0.34 -0.01 0.07 0.09 -0.78 0.97 -0.11

O-RNM and G-RNM
MFIV RNS RNK

Pearson 1.00 0.90 0.94
Spearman 1.00 0.88 0.96
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Table 4. Decile portfolio sort based on the estimated RNS

Entries report the average post-ranking returns of the equally- and value-weighted decide portfolios

formed based on the estimated O-RNS and G-RNS (Panel A), as well as the average post-ranking returns,

and the risk-adjusted returns (α) of the high-minus-low (10 minus 1) spread portfolios (Panel B). We

estimate α’s with respect to the CAPM, the Fama and French (1993) three-factor model (FF3), the

Carhart (1997) four-factor model (FFC), the Fama and French (2018) five- and six-factor models (FF5

and FF6), the Hou et al. (2015) q-factor model (q4), and the Stambaugh and Yuan (2017) mispricing

factor model (SY). At the end of each month t, we sort stocks in ascending order based on the estimated

O-RNS or G-RNS, and then we form equally- and value-weighted decile portfolios. Then, we calculate the

post-ranking return of these portfolios, and the highest minus lowest (10 minus 1) spread portfolios in the

succeeding month-(t+ 1). The post-ranking return period spans February 1996 to December 2017 (263

months). t-statistics, adjusted for heteroscedasticity and autocorrelation, are reported in parentheses.

The unit of the average returns and alphas is % per month. N in the last row of Panel A is the average

number of stocks in each decile portfolio in each month.

Equally-weighted Value-weighted
O-RNS G-RNS O-RNS G-RNS

Panel A: Average return of the decile portfolios
1 (lowest) 0.36 (1.12) 0.78 (2.60) 0.44 (1.58) 0.67 (2.54)
2 0.59 (1.69) 0.79 (2.28) 0.70 (2.50) 0.74 (2.65)
3 0.73 (1.93) 0.82 (2.23) 0.86 (2.98) 0.82 (2.75)
4 0.76 (1.92) 0.96 (2.40) 0.87 (2.74) 0.95 (3.14)
5 0.81 (1.97) 0.90 (2.23) 1.06 (3.38) 1.04 (3.37)
6 0.86 (2.05) 0.86 (1.98) 1.07 (3.35) 1.02 (2.93)
7 1.03 (2.33) 0.78 (1.75) 1.22 (3.71) 0.94 (2.65)
8 1.02 (2.25) 0.80 (1.69) 0.91 (2.56) 0.89 (2.48)
9 1.29 (2.67) 1.01 (2.04) 1.24 (3.43) 0.99 (2.43)
10 (highest) 1.50 (3.30) 1.25 (2.83) 1.23 (3.78) 1.07 (3.38)
N 220.8 220.8 220.8 220.8

Panel B: Average returns and alphas of the spread portfolios
Ave. Ret 1.14 (4.79) 0.48 (2.19) 0.79 (3.50) 0.40 (1.96)
αCAPM 0.90 (4.52) 0.25 (1.39) 0.74 (3.16) 0.38 (1.80)
αFF3 0.90 (4.40) 0.22 (1.32) 0.65 (3.06) 0.27 (1.49)
αFFC 1.14 (5.07) 0.47 (2.60) 0.81 (3.81) 0.41 (2.39)
αFF5 1.06 (4.10) 0.38 (1.76) 0.53 (2.36) 0.11 (0.55)
αFF6 1.21 (5.11) 0.54 (2.89) 0.65 (3.12) 0.22 (1.24)
αq4 1.37 (4.48) 0.65 (2.59) 0.73 (2.95) 0.29 (1.35)
αSY 1.46 (4.89) 0.79 (3.23) 0.78 (3.14) 0.39 (1.88)
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Table 5. Factor loadings obtained from regressions of the RNS-sorted value-weighted spread portfolios on factors

Entries report the factor loadings obtained from regressing the RNS-sorted value-weighted decile spread portfolios returns on factors. The factor models are the

CAPM (MKT), Fama and French (1993) three-factor model (MKT, SMB, HML), Carhart (1997) four-factor model (MKT, SMB, HML, UMD), Fama and French

(2018) five-factor model (MKT, SMB(FF5), HML, RMW, CMA) and six-factor model (MKT, SMB(FF5), HML, RMW, CMA, UMD), Hou et al. (2015) q-factor

model (MKT(q4), ME(q4), IA(q4), ROE(q4)), and the Stambaugh and Yuan (2017) mispricing-factor model (MKT, SMB(SY), MGMT, PERF). Columns labeled

“O” (“G”) use O-RNS (G-RNS) as a sorting variable. The post-ranking return period spans February 1996 to December 2017 (263 months). t-statistics, adjusted

for heteroscedasticity and autocorrelation, are reported in parentheses.

CAPM FF3 FFC FF5 FF6 q4 SY
O G O G O G O G O G O G O G

MKT 0.09 0.04 0.10 0.05 0.00 -0.04 0.15 0.12 0.08 0.05 0.04 -0.03
(1.30) (0.55) (1.58) (0.85) (0.04) (-0.82) (2.20) (1.81) (1.40) (0.98) (0.57) (-0.43)

SMB 0.13 0.17 0.17 0.20
(1.30) (1.47) (2.15) (2.19)

HML 0.31 0.38 0.22 0.30 0.15 0.19 -0.02 0.04
(3.00) (3.81) (2.20) (3.03) (1.20) (1.65) (-0.19) (0.35)

UMD -0.24 -0.22 -0.26 -0.24
(-3.91) (-3.76) (-4.41) (-4.51)

SMB(FF5) 0.19 0.25 0.24 0.29
(1.86) (2.69) (3.08) (4.26)

RMW 0.12 0.18 0.19 0.25
(0.77) (1.20) (1.67) (1.99)

CMA 0.23 0.23 0.32 0.32
(1.13) (1.51) (2.11) (2.61)

MKT(q4) 0.07 0.04
(1.11) (0.66)

ME(q4) 0.06 0.11
(0.53) (0.74)

IA(q4) 0.47 0.56
(2.92) (3.89)

ROE(q4) -0.26 -0.21
(-1.88) (-1.97)

SMB(SY) 0.16 0.20
(1.42) (1.47)

MGMT 0.18 0.18
(1.52) (1.42)

PERF -0.17 -0.17
(-1.90) (-1.98)

Alpha 0.74 0.38 0.65 0.27 0.81 0.41 0.53 0.11 0.65 0.22 0.73 0.29 0.78 0.39
(3.16) (1.80) (3.06) (1.49) (3.81) (2.39) (2.36) (0.55) (3.12) (1.24) (2.95) (1.35) (3.14) (1.88)

Adj. R2 0.01 -0.01 0.08 0.12 0.19 0.22 0.10 0.15 0.23 0.27 0.11 0.14 0.07 0.08
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Table 6. Robustness analysis: RNS in Fama-MacBeth regressions

Entries report the results from the Fama and MacBeth (1973) regression of the stock returns on the

estimated RNS, firms’ and stocks’ characteristics, and SSD. Columns (1) to (4) (Columns (5) to (8))

report the results using O-RNS (G-RNS) as a regressor. At any given month, we conduct two alternative

types of regressions for the cross-sectional regression: the ordinary least square (OLS), and the value-

weighted least square (VWLS). The last row indicates the type of the cross-sectional regression. Beta is

the market beta, SIZE is the log market capitalization, log(B/M) is the log book-to-market, Profit is the

operational profit, Invest is the annual growth rate of the total asset, Momentum is the past 11 months

cumulative return Rt−12,t−1, and Reversal is the previous month return Rt−1,t. Adj. R2 is the time-series

average of the adjusted R2 of the cross-sectional regressions. N is the time-series average of the number of

stocks in the cross-sectional regressions. The return period spans February 1996 to December 2017 (263

months). t-statistics, adjusted for heteroscedasticity and autocorrelation, are reported in parentheses.

FM regression of stock returns on RNS and characteristic variables
(1) (2) (3) (4) (5) (6) (7) (8)

O-RNS 0.73 0.71 0.70 0.43
(3.94) (3.61) (7.15) (3.16)

G-RNS 0.39 0.49 0.36 0.19
(1.86) (2.02) (3.96) (1.29)

BETA -0.07 -0.11 -0.07 -0.10
(-0.25) (-0.32) (-0.24) (-0.30)

SIZE 0.03 -0.05 0.01 -0.05
(0.46) (-0.89) (0.15) (-1.07)

log(B/M) 0.11 0.01 0.11 0.01
(1.25) (0.14) (1.28) (0.10)

Profit 0.13 0.08 0.13 0.08
(2.85) (1.92) (2.86) (1.89)

Invest -0.05 -0.03 -0.05 -0.03
(-1.44) (-0.86) (-1.48) (-0.86)

Momentum 0.13 0.26 0.11 0.25
(0.48) (0.94) (0.42) (0.89)

Reversal -0.90 -1.42 -1.04 -1.54
(-1.63) (-2.08) (-1.89) (-2.27)

Intercept 1.06 1.13 0.65 1.78 0.99 1.05 0.89 1.84
(2.46) (3.49) (0.60) (1.90) (2.30) (3.21) (0.83) (1.95)

Adj. R2 0.25% -3.34% 7.16% 3.07% 0.20% -3.36% 7.11% 3.06%
N 2208 2208 2057 2057 2208 2208 2057 2057
Regress type OLS VWLS OLS VWLS OLS VWLS OLS VWLS

68



Table 7. Robustness analysis: Quintile portfolios sorted by the estimated
RNS

Entries report the average post-ranking returns of the equally- and value-weighted quintile portfolios,

formed based on the estimated O-RNS and G-RNS (Panel A). They also report the average post-ranking

returns, and the risk-adjusted returns (α) of the high-minus-low (5 minus 1) spread portfolio (Panel B).

We estimate α’s with respect to the CAPM, Fama and French (1993) three-factor model (FF3), Carhart

(1997) four-factor model (FFC), Fama and French (2018) five- and six-factor models (FF5 and FF6), Hou

et al. (2015) q-factor model (q4), and the Stambaugh and Yuan (2017) mispricing factor model (SY). At

the end of each month t, we sort stocks in ascending order based on the estimated O-RNS or G-RNS,

and we form equally- and value-weighted quintile portfolios. Then, we calculate the return of these

portfolios, and that of the long-short (5 minus 1) spread portfolios in the succeeding month-(t+1). The

post-ranking return period spans February 1996 to December 2017 (263 months). t-statistics, adjusted

for heteroscedasticity and autocorrelation, are reported in parentheses. The unit of the average returns

and alphas is % per month.

Equally-weighted Value-weighted
O-RNS G-RNS O-RNS G-RNS

Panel A: Average return of the quintile portfolios
1 (lowest) 0.48 (1.43) 0.78 (2.45) 0.57 (2.11) 0.71 (2.67)
2 0.74 (1.94) 0.89 (2.33) 0.86 (2.94) 0.87 (2.97)
3 0.83 (2.02) 0.88 (2.12) 1.07 (3.48) 1.03 (3.27)
4 1.03 (2.30) 0.79 (1.73) 1.08 (3.23) 0.90 (2.61)
5 (highest) 1.40 (3.00) 1.13 (2.43) 1.23 (3.66) 1.02 (2.87)
Panel B: Average returns and alphas of the spread portfolios
Ave. Ret 0.92 (4.20) 0.35 (1.66) 0.66 (3.50) 0.31 (1.48)
αCAPM 0.69 (3.75) 0.11 (0.68) 0.56 (3.08) 0.20 (1.01)
αFF3 0.68 (3.81) 0.09 (0.57) 0.48 (2.98) 0.10 (0.62)
αFFC 0.92 (4.63) 0.34 (2.04) 0.63 (3.98) 0.26 (1.60)
αFF5 0.86 (3.67) 0.28 (1.26) 0.44 (2.37) 0.07 (0.38)
αFF6 1.01 (4.82) 0.44 (2.41) 0.54 (3.32) 0.18 (1.06)
αq4 1.15 (4.08) 0.54 (2.08) 0.66 (3.14) 0.23 (1.11)
αSY 1.23 (4.48) 0.66 (2.73) 0.67 (3.56) 0.27 (1.41)
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Table 8. Decile portfolios sorted by the dividend non-adjusted RNS

Entries report the average post-ranking returns of the equally- and value-weighted decide portfolios,

formed based on the estimated dividend non-adjusted O-RNS and G-RNS (Panel A). They also report

the average post-ranking returns and the risk-adjusted returns (α) of the high-minus-low (10 minus

1) spread portfolios (Panel B). The dividend non-adjusted RNS is estimated by setting D̃t,T = 0, in

Proposition 3.1. We estimate α’s with respect to the CAPM, Fama and French (1993) three-factor

model (FF3), Carhart (1997) four-factor model (FFC), Fama and French (2018) five- and six-factor

models (FF5 and FF6), Hou et al. (2015) q-factor model (q4), and the Stambaugh and Yuan (2017)

mispricing factor model (SY). At the end of each month t, we sort stocks in ascending order, based on

the estimated O-RNS or G-RNS and we form equally- and value-weighted decile portfolios. Then, we

calculate the return of these portfolios and that of the long-short (10 minus 1) spread portfolios in the

succeeding month-(t+ 1). The post-ranking return period spans February 1996 to December 2017 (263

months). t-statistics, adjusted for heteroscedasticity and autocorrelation, are reported in parentheses.

The unit of the average returns and alphas is % per month.

Equally-weighted Value-weighted
O-RNS G-RNS O-RNS G-RNS

Panel A: Average return of the decile portfolios
1 (lowest) 0.43 (1.41) 0.75 (2.63) 0.53 (1.97) 0.74 (2.88)
2 0.57 (1.68) 0.81 (2.43) 0.71 (2.64) 0.75 (2.78)
3 0.71 (1.89) 0.90 (2.48) 0.82 (2.82) 0.84 (2.73)
4 0.78 (1.99) 0.92 (2.33) 0.88 (2.74) 0.94 (2.98)
5 0.82 (2.00) 0.87 (2.14) 1.06 (3.23) 1.07 (3.27)
6 0.83 (1.97) 0.83 (1.89) 1.05 (3.17) 0.89 (2.55)
7 0.97 (2.17) 0.81 (1.79) 1.21 (3.46) 1.12 (3.07)
8 1.05 (2.28) 0.84 (1.77) 0.97 (2.62) 0.89 (2.32)
9 1.27 (2.60) 0.99 (1.96) 1.17 (3.18) 0.90 (2.16)
10 (highest) 1.50 (3.23) 1.24 (2.72) 1.30 (4.00) 1.06 (3.25)
Panel B: Average returns and alphas of the spread portfolios

Ave. Ret 1.06 (4.16) 0.49 (2.04) 0.77 (3.73) 0.32 (1.64)
αCAPM 0.78 (3.72) 0.20 (1.04) 0.67 (3.06) 0.24 (1.24)
αFF3 0.78 (3.72) 0.18 (1.09) 0.59 (3.11) 0.14 (0.83)
αFFC 1.03 (4.56) 0.44 (2.47) 0.72 (3.83) 0.29 (1.87)
αFF5 0.97 (3.79) 0.40 (1.87) 0.52 (2.63) 0.08 (0.45)
αFF6 1.13 (4.80) 0.56 (3.07) 0.61 (3.36) 0.19 (1.18)
αq4 1.29 (4.24) 0.66 (2.64) 0.70 (3.20) 0.22 (1.11)
αSY 1.37 (4.61) 0.80 (3.29) 0.73 (3.38) 0.32 (1.68)
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Table 9. Decile portfolio sort based on ∆RNS

Entries report the average post-ranking returns of the equally- and value-weighted decile portfolios

formed based on the ∆RNS, which is the difference between O-RNS and G-RNS (Panel A), as well

as the average post-ranking returns and the risk-adjusted returns (α) of the high-minus-low (10 minus

1) spread portfolios (Panel B). We estimate α’s with respect to the CAPM, Fama and French (1993)

three-factor model (FF3), Carhart (1997) four-factor model (FFC), Fama and French (2018) five- and

six-factor models (FF5 and FF6), Hou et al. (2015) q-factor model (q4), and the Stambaugh and Yuan

(2017) mispricing factor model (SY). At the end of each month t, we sort stocks in ascending order,

based on the estimated ∆RNS, and we form equally- and value-weighted decile portfolios. Then, we

calculate the return of these portfolios and that of the long-short (10 minus 1) spread portfolios in the

succeeding month-(t+ 1). The post-ranking return period spans February 1996 to December 2017 (263

months). t-statistics, adjusted for heteroscedasticity and autocorrelation, are reported in parentheses.

The unit of the average returns and alphas is % per month. N in the last row of Panel A is the average

number of stocks in each decile portfolio.

∆RNS-sorted portfolios
Equally-weighted Value-weighted

Panel A: Average return of the decile portfolios
1 (lowest) -0.02 (-0.04) 0.22 (0.66)
2 0.44 (1.10) 0.59 (2.07)
3 0.62 (1.59) 0.65 (2.07)
4 0.80 (2.01) 0.73 (2.31)
5 0.92 (2.21) 0.82 (2.62)
6 0.92 (2.20) 1.01 (3.05)
7 1.01 (2.47) 1.02 (3.22)
8 1.19 (2.90) 0.90 (2.81)
9 1.40 (3.39) 1.14 (3.70)
10 (highest) 1.66 (3.84) 1.41 (4.36)
N 220.8 220.8
Panel B: Average returns and alphas of the spread portfolios
Ave. Ret 1.68 (9.70) 1.19 (5.69)
αCAPM 1.59 (9.23) 1.11 (4.80)
αFF3 1.63 (9.56) 1.14 (4.71)
αFFC 1.71 (9.41) 1.27 (5.07)
αFF5 1.71 (8.71) 1.12 (4.62)
αFF6 1.76 (8.85) 1.21 (4.97)
αq4 1.91 (8.56) 1.35 (4.84)
αSY 1.82 (7.39) 1.33 (4.59)
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Table 10. Dependent bivariate sort: First by |SSD| and then by O-RNS

Entries report the result of the bivariate dependent sort, where we first sort stocks based on the absolute

value of the estimated SSD, and then by O-RNS. At the end of each month, we first sort stocks into four

subgroups based on the absolute value of the estimated SSD, and then within each absolute SSD group,

we further sort stocks into quartile portfolios by the O-RNS criterion. Each column corresponds to the

level of the first sorting variable, and each row reports the average return and alphas of the quartile

spread portfolios with respect to the second sorting variable, O-RNS. The post-ranking return period

spans February 1996 to December 2017 (263 months). t-statistics, adjusted for heteroscedasticity and

autocorrelation, are reported in parentheses. The unit of the average returns and alphas is % per month.

Equally-weighted Value-weighted
|SSD| 1 (low) 2 3 4 (high) 1 (low) 2 3 4 (high)

Highest O-RNS minus Lowest O-RNS spread portfolios
Ave. Ret 0.26 0.37 0.57 1.51 0.36 0.18 0.63 1.15

(1.43) (1.94) (2.67) (6.18) (1.85) (0.78) (2.93) (4.58)
αCAPM 0.07 0.17 0.39 1.28 0.29 0.05 0.56 1.06

(0.45) (1.00) (2.02) (5.88) (1.48) (0.22) (2.85) (4.17)
αFF3 0.02 0.16 0.41 1.33 0.23 0.04 0.53 1.07

(0.16) (1.07) (2.21) (6.00) (1.23) (0.17) (2.62) (4.25)
αFFC 0.19 0.31 0.66 1.53 0.31 0.09 0.68 1.24

(1.36) (1.88) (3.44) (6.19) (1.68) (0.44) (3.44) (4.36)
αFF5 0.11 0.31 0.59 1.53 0.18 0.06 0.50 1.17

(0.61) (1.57) (2.45) (5.56) (0.89) (0.25) (2.05) (3.98)
αFF6 0.22 0.40 0.75 1.65 0.24 0.09 0.60 1.27

(1.42) (2.22) (3.71) (6.11) (1.21) (0.43) (2.81) (4.16)
αq4 0.29 0.45 0.86 1.84 0.26 0.18 0.75 1.42

(1.59) (2.03) (3.02) (6.06) (1.25) (0.81) (3.09) (4.24)
αSY 0.36 0.56 1.02 1.85 0.27 0.17 0.71 1.38

(2.10) (2.80) (3.75) (5.73) (1.33) (0.75) (3.04) (3.73)
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Table 11. SSD-adjusted regressions of the O-RNS-sorted portfolios

Entries report the intercepts of the regressions of SSD-adjusted excess returns of the value-weighted decide portfolios formed based on the estimated O-RNS,

equation (33), on a set of risk factor(s). To this end, we consider the CAPM, Fama and French (1993) three-factor model (FF3), Carhart (1997) four-factor model

(FFC), Fama and French (2018) five- and six-factor models (FF5 and FF6), Hou et al. (2015) q-factor model (q4), and the Stambaugh and Yuan (2017) mispricing

factor model (SY), separately. At the end of each month t, we sort stocks in ascending order based on the estimated O-RNS, and we form value-weighted decile

portfolios. Then, we calculate the SSD-adjusted return of these portfolios and that of the spread portfolio in the succeeding month-(t + 1), and regress it on

each set of risk-factors. The post-ranking return period spans February 1996 to December 2017 (263 months). t-statistics, adjusted for heteroscedasticity and

autocorrelation, are reported in parentheses. The unit of SSD is % per 30 days and that of the alphas is % per month.

O-RNS-sorted value-weighted decile portfolios Spread
1 (L) 2 3 4 5 6 7 8 9 10 (H) 10-1

SSD -0.27 -0.11 -0.06 -0.04 -0.01 0.01 0.04 0.09 0.18 0.57 0.84
(-16.54) (-10.03) (-7.84) (-4.41) (-1.35) (0.74) (5.02) (8.77) (11.99) (9.86) (12.54)

αCAPM -0.04 0.02 0.06 0.02 0.19 0.16 0.27 -0.11 0.14 -0.14 -0.10
(-0.34) (0.22) (0.81) (0.20) (1.86) (1.40) (2.20) (-0.81) (0.85) (-0.74) (-0.44)

αFF3 -0.06 0.02 0.06 0.03 0.23 0.16 0.28 -0.12 0.07 -0.25 -0.19
(-0.51) (0.22) (0.83) (0.31) (2.41) (1.61) (2.31) (-0.89) (0.45) (-1.46) (-0.93)

αFFC -0.05 0.03 0.05 0.05 0.23 0.18 0.32 -0.04 0.22 -0.07 -0.02
(-0.44) (0.40) (0.60) (0.51) (2.38) (1.77) (2.60) (-0.25) (1.49) (-0.41) (-0.09)

αFF5 -0.01 0.00 0.04 0.02 0.24 0.17 0.29 -0.11 0.07 -0.31 -0.30
(-0.09) (0.01) (0.55) (0.16) (2.37) (1.65) (2.32) (-0.73) (0.41) (-1.59) (-1.36)

αFF6 -0.01 0.01 0.03 0.03 0.24 0.17 0.32 -0.06 0.17 -0.19 -0.18
(-0.06) (0.15) (0.42) (0.30) (2.34) (1.74) (2.54) (-0.37) (1.13) (-1.08) (-0.88)

αq4 -0.03 -0.04 0.03 0.06 0.29 0.24 0.38 0.07 0.24 -0.15 -0.11
(-0.27) (-0.54) (0.37) (0.50) (2.68) (2.08) (2.97) (0.48) (1.26) (-0.65) (-0.46)

αSY 0.01 -0.01 0.03 0.05 0.31 0.23 0.38 0.04 0.27 -0.03 -0.04
(0.09) (-0.18) (0.35) (0.43) (2.92) (1.97) (2.97) (0.24) (1.62) (-0.14) (-0.16)
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Table 12. Subsample analysis: Traded versus non-traded options

Entries report the average post-ranking returns, SSD, the average firm size (log market capitalization),

relative bid-ask spread (BAS), and Amihud’s (2002) illiquidity measure (Illiq) of the value-weighted

decide portfolios, formed based on the estimated O-RNS (Panel A), as well as the average post-ranking

returns and the risk-adjusted returns (α) of the high-minus-low (10 minus 1) spread portfolios (Panel B).

We split our stock universe into two subgroups, based on the aggregate option trading volume, on each

sorting date. The “traded” subgroup contains stocks, whose options have a non-zero trading volume.

The “non-traded” subgroup contains stocks, whose options have zero trading volume. We estimate α’s

with respect to the CAPM, Fama and French (1993) three-factor model (FF3), Carhart (1997) four-factor

model (FFC), Fama and French (2018) five- and six-factor models (FF5 and FF6), Hou et al. (2015)

q-factor model (q4), and the Stambaugh and Yuan (2017) mispricing factor model (SY), separately. For

any given option trading volume group, at the end of each month t, we sort stocks in ascending order,

based on the estimated O-RNS, and we form value-weighted decile portfolios. Then, we calculate the

return of these portfolios, and the long-short (10 minus 1) spread portfolios in the succeeding month-

(t+ 1). We also calculate the value-weighted average of stock characteristics of the stocks in each decile

portfolio. The post-ranking return period spans February 1996 to December 2017 (263 months). t-

statistics, adjusted for heteroscedasticity and autocorrelation, are reported in parentheses. The unit of

the average returns and alphas is % per month. N in the last row of Panel A is the average number of

stocks in each decile portfolio.

Stocks with non-zero option trading volume Stocks with zero option trading volume
Return SSD SIZE BAS Iliq Return SSD SIZE BAS Iliq

Panel A: Average return and characteristics of the decile portfolios

1 (Low) 0.43 (1.56) -0.24 17.2 0.38 0.08 0.68 (2.48) -0.65 14.6 0.48 1.07
2 0.72 (2.60) -0.10 17.5 0.34 0.07 0.96 (2.92) -0.29 14.5 0.47 0.67
3 0.85 (2.90) -0.06 17.4 0.33 0.07 0.84 (2.57) -0.17 14.4 0.48 0.79
4 0.92 (2.95) -0.03 17.3 0.33 0.09 1.11 (3.40) -0.12 14.4 0.47 0.85
5 1.01 (3.12) -0.01 17.1 0.33 0.09 1.03 (3.18) -0.06 14.3 0.48 0.93
6 1.06 (3.34) 0.00 16.9 0.35 0.15 1.21 (3.38) 0.02 14.2 0.50 1.04
7 1.13 (3.43) 0.03 16.8 0.36 0.14 1.40 (4.05) 0.08 14.1 0.52 1.12
8 1.02 (2.90) 0.07 16.5 0.39 0.23 1.36 (3.57) 0.20 14.1 0.55 1.58
9 1.23 (3.42) 0.14 16.1 0.42 0.75 1.59 (4.20) 0.40 14.1 0.56 1.39
10 (Hi) 1.14 (3.19) 0.43 15.6 0.47 0.70 1.48 (4.35) 1.04 14.1 0.56 1.37
N 174.3 46.7

Panel B: Average returns and alphas of the spread portfolios

Ave. Ret 0.71 (2.91) 0.80 (3.82)
αCAPM 0.61 (2.65) 0.73 (3.62)
αFF3 0.51 (2.38) 0.68 (3.31)
αFFC 0.68 (3.04) 0.86 (3.75)
αFF5 0.43 (1.78) 0.64 (3.32)
αFF6 0.55 (2.41) 0.76 (4.00)
αq4 0.64 (2.35) 0.88 (3.70)
αSY 0.70 (2.81) 0.89 (3.27)
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Table 13. Summary statistics of the estimated IV skew measures

Entries in Panel A show the summary statistics of SSD, the XZZ IV slope measures calculated based on

the standard IV (XZZo), and the robust IV (XZZr), separately, as well as the difference between the

two XZZ measures. We estimate these option-implied measures at the end of each month from January

1996 to December 2017 (264 months). P5 and P95 stand for the fifth and 95th percentile, respectively.

The unit of SSD is % per 30-day. The unit for other columns is the volatility in percentage. Entries

in Panel B report the Pearson and Spearman pairwise correlations between SSD and the XZZ slope

measures.

SSD XZZo XZZr ∆XZZ
Panel A: Summary statistics

Mean -0.07 6.85 6.33 0.53
St. dev. 1.32 14.78 11.24 8.98
P5 -1.40 -6.73 -2.49 -8.10
Median -0.03 4.96 4.21 0.26
P95 1.18 27.28 23.34 9.60
Obs 582,686 582,686 582,686 582,686

Panel B: Pairwise correlations
SSD and XZZ measures

XZZo XZZr ∆XZZ
Pearson -0.66 -0.07 -1.00
Spearman -0.51 -0.05 -0.99

XZZo and XZZr

Pearson 0.80
Spearman 0.80
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Table 14. Decile portfolio sort based on the XZZ IV slope measures

Entries report the average post-ranking returns of the equally- and value-weighted decide portfolios

formed based on the estimated XZZo and XZZr (Panel A), as well as the average post-ranking returns,

and the risk-adjusted returns (α) of the high-minus-low (10 minus 1) spread portfolios (Panel B). We

estimate α’s with respect to the CAPM, Fama and French (1993) three-factor model (FF3), the Carhart

(1997) four-factor model (FFC), the Fama and French (2018) five- and six-factor models (FF5 and FF6),

Hou et al. (2015) q-factor model (q4), and the Stambaugh and Yuan (2017) mispricing factor model (SY).

At the end of each month t, we sort stocks in ascending order based on the estimated XZZo or XZZr,

and we form equally- and value-weighted decile portfolios. Then, we calculate the post-ranking return

of each one of these portfolios, and of the long-short (10 minus 1) spread portfolios, in the succeeding

month-(t + 1). The post-ranking return period spans February 1996 to December 2017 (263 months).

t-statistics, adjusted for heteroscedasticity and autocorrelation are reported in parentheses. The unit of

the average returns and alphas is % per month. N in the last row of Panel A is the average number of

stocks in each decile portfolio in each month.

Equally-weighted Value-weighted
XZZo XZZr XZZo XZZr

Panel A: Average return of the decile portfolios
1 (lowest) 1.54 (2.88) 1.15 (2.17) 1.68 (4.09) 1.03 (2.78)
2 1.36 (3.26) 1.08 (2.40) 1.20 (4.20) 1.25 (4.23)
3 1.13 (3.13) 0.87 (2.36) 1.06 (4.09) 0.92 (3.63)
4 1.01 (2.86) 0.90 (2.47) 0.96 (3.67) 0.81 (3.15)
5 0.91 (2.57) 0.91 (2.52) 0.75 (2.81) 0.82 (3.04)
6 0.87 (2.29) 0.83 (2.21) 0.68 (2.25) 0.80 (2.68)
7 0.66 (1.68) 0.79 (2.03) 0.69 (2.21) 0.66 (2.19)
8 0.67 (1.58) 0.80 (1.97) 0.55 (1.50) 0.87 (2.59)
9 0.62 (1.45) 0.82 (1.91) 0.62 (1.56) 0.79 (2.04)
10 (highest) 0.19 (0.43) 0.80 (1.91) 0.28 (0.61) 0.65 (1.55)
N 220.7 220.7 220.7 220.7

Panel B: Average returns and alphas of the spread portfolios
Ave. Ret -1.34 (-6.27) -0.35 (-1.68) -1.39 (-4.40) -0.38 (-1.47)
αCAPM -1.19 (-5.69) -0.17 (-0.88) -1.44 (-4.35) -0.44 (-1.87)
αFF3 -1.25 (-6.30) -0.22 (-1.15) -1.47 (-4.49) -0.44 (-1.90)
αFFC -1.36 (-5.93) -0.36 (-1.72) -1.50 (-4.22) -0.42 (-1.70)
αFF5 -1.35 (-5.80) -0.40 (-1.84) -1.26 (-3.93) -0.23 (-1.06)
αFF6 -1.42 (-5.90) -0.49 (-2.22) -1.30 (-3.82) -0.23 (-0.98)
αq4 -1.65 (-6.11) -0.62 (-2.54) -1.57 (-4.06) -0.36 (-1.46)
αSY -1.55 (-5.35) -0.59 (-2.24) -1.36 (-3.71) -0.17 (-0.67)
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Table 15. SSD-adjusted regression of the XZZ-sorted portfolios

Entries report the intercepts of the regressions of SSD-adjusted excess returns of the value-weighted decide portfolios formed based on the estimated XZZo,

equation (33), on a set of risk factor(s) of the CAPM, Fama and French (1993) three-factor model (FF3), Carhart (1997) four-factor model (FFC), Fama and

French (2018) five- and six-factor models (FF5 and FF6), Hou et al. (2015) q-factor model (q4), and the Stambaugh and Yuan (2017) mispricing factor model

(SY), respectively. At the end of each month t, we sort stocks in ascending order, based on the estimated XZZo, and we form value-weighted decile portfolios.

Then, we calculate the SSD-adjusted return for each one of these portfolios, and the long-short (10 minus 1) spread portfolio, in the succeeding month-(t + 1),

and regress it on any given set of risk-factors. The post-ranking return period spans February 1996 to December 2017 (263 months). t-statistics, adjusted for

heteroscedasticity and autocorrelation, are reported in parentheses. The unit of SSD is % per 30 days and that of the alphas is % per month.

O-RNS sorted value-weighted decile portfolios Spread
1 (lowest) 2 3 4 5 6 7 8 9 10 (highest) 10-1

SSD 1.09 0.18 0.06 0.00 -0.04 -0.08 -0.13 -0.21 -0.30 -0.71 -1.79
(11.62) (8.06) (6.18) (0.39) (-7.58) (-14.10) (-17.25) (-18.87) (-17.47) (-13.99) (-12.97)

αCAPM -0.36 0.21 0.23 0.20 0.02 -0.07 -0.04 -0.19 -0.08 -0.02 0.35
(-1.58) (1.77) (2.46) (1.88) (0.20) (-0.78) (-0.42) (-1.67) (-0.51) (-0.08) (1.16)

αFF3 -0.42 0.20 0.23 0.20 0.01 -0.09 -0.05 -0.22 -0.15 -0.09 0.32
(-1.77) (1.65) (2.38) (1.93) (0.08) (-1.08) (-0.52) (-1.82) (-1.02) (-0.41) (1.04)

αFFC -0.16 0.23 0.19 0.13 -0.03 -0.10 -0.06 -0.18 -0.04 0.12 0.28
(-0.62) (1.84) (1.94) (1.28) (-0.30) (-1.13) (-0.57) (-1.52) (-0.28) (0.62) (0.78)

αFF5 -0.31 0.12 0.17 0.03 -0.06 -0.12 -0.04 -0.07 0.02 0.19 0.50
(-1.14) (0.92) (1.91) (0.25) (-0.69) (-1.39) (-0.34) (-0.59) (0.15) (0.91) (1.50)

αFF6 -0.14 0.14 0.15 -0.01 -0.08 -0.12 -0.04 -0.05 0.08 0.32 0.46
(-0.55) (1.12) (1.55) (-0.12) (-0.91) (-1.40) (-0.38) (-0.46) (0.55) (1.67) (1.28)

αq4 0.02 0.21 0.16 0.07 -0.06 -0.12 -0.04 -0.09 0.06 0.25 0.23
(0.05) (1.41) (1.74) (0.60) (-0.66) (-1.30) (-0.33) (-0.71) (0.33) (1.05) (0.61)

αSY 0.08 0.23 0.14 -0.07 -0.10 -0.11 -0.02 -0.06 0.16 0.45 0.37
(0.28) (1.65) (1.38) (-0.80) (-1.24) (-1.03) (-0.21) (-0.50) (0.94) (2.23) (0.99)
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Table 16. Limitations of the implied stock price approach: Simulation results

Entries report the simulation results of the implied stock price approach. We use the Black and Scholes

(1973) model to calculate the implied stock price. We simulate call and put option prices, assuming

St = 100, τ = 1/6, rf = 4%, D̃t,T = 0.5 for strikes K = 80, 85, . . . , 120. The true implied volatility (IV)

curve is modelled as a function of moneyness, IV (K/St) = σATM + k(K/St − 1) with σATM = 20%.

We consider five alternative values for k; k = −1/2,−1/4, 0, 1/4, 1/2. Given these assumptions, we

simulate a set of option prices using the Black and Scholes (1973) (BS) function with deterministic

dividend payments. Then, we estimate the two parameters S∗
t and σ∗ by minimizing the sum of squared

errors between the simulated option prices and the theoretical option prices, based on the BS function

BS(S∗
t ,K, T, r, q, σ∗, D̃t,T ). We use a set of call options and a set of put options, separately, as the

observed option prices. Columns under Call (Put) options, report the estimation results, respectively.

Given the estimate of S∗
t , we calculate the corresponding annualized estimated return wedge, ω̂t,T =

∆te
rfτ/τ , which would prevail if the assumption of the implied stock approach (equation (B.16)) holds.

Call options Put options
k S∗

t ω̂t,T σ∗ S∗
t ω̂t,T σ∗

-1/2 100.38 2.3% 17.9% 100.35 2.1% 21.1%
-1/4 100.17 1.0% 19.0% 100.21 1.2% 20.6%
0 100 0.0% 20.0% 100 0.0% 20.0%
1/4 99.86 -0.9% 21.1% 99.71 -1.7% 19.1%
1/2 99.72 -1.7% 22.2% 99.35 -4.0% 18.0%
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